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DESCRIPTION OF SAMPLES

AND POPULATIONS

Chapter

2

2.1 Introduction
Statistics is the science of analyzing and learning from data. In this section we
introduce some terminology and notation for dealing with data.

Variables

We begin with the concept of a variable. A variable is a characteristic of a person or
a thing that can be assigned a number or a category. For example, blood type (A, B,
AB, O) and age are two variables we might measure on a person.

Blood type is an example of a categorical variable: A categorical variable is a
variable that records which of several categories a person or thing is in. Examples of
categorical variables are

Blood type of a person: A, B, AB, O
Sex of a fish: male, female
Color of a flower: red, pink, white
Shape of a seed: wrinkled, smooth

For some categorical variables, the categories can be arrayed in a meaningful rank
order. Such a variable is said to be ordinal. For example, the response of a patient to
therapy might be none, partial, or complete.

• show how frequency distributions are used to make
bar charts and histograms.

• compare the mean and median as measures of
center.

• demonstrate how to construct and read a variety 
of graphics including dotplots, boxplots, and
scatterplots.

• compare several measures of variability with
emphasis on the standard deviation.

• examine how transformations of variables affect
distributions.

• consider the relationship between populations and
samples.

Objectives
In this chapter we will study how to describe data. In particular, we will
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Age is an example of a numeric variable. A numeric variable is a variable that
records the amount of something.A continuous variable is a numeric variable that is
measured on a continuous scale. Examples of continuous variables are

Weight of a baby
Cholesterol concentration in a blood specimen
Optical density of a solution

A variable such as weight is continuous because, in principle, two weights can be
arbitrarily close together. Some types of numeric variables are not continuous but
fall on a discrete scale, with spaces between the possible values. A discrete variable
is a numeric variable for which we can list the possible values. For example, the
number of eggs in a bird’s nest is a discrete variable because only the values 0, 1,
2, 3, . . . , are possible. Other examples of discrete variables are

Number of bacteria colonies in a petri dish
Number of cancerous lymph nodes detected in a patient
Length of a DNA segment in basepairs

The distinction between continuous and discrete variables is not a rigid one. After
all, physical measurements are always rounded off. We may measure the weight of a
steer to the nearest kilogram, of a rat to the nearest gram, or of an insect to the near-
est milligram.The scale of the actual measurements is always discrete, strictly speak-
ing. The continuous scale can be thought of as an approximation to the actual scale
of measurement.

Observational Units

When we collect a sample of n persons or things and measure one or more variables
on them, we call these persons or things observational units or cases. The following
are some examples of samples.

Sample Variable Observational unit

150 babies born in a certain hospital Birthweight (kg) A baby

73 Cecropia moths caught in a trap Sex A moth

81 plants that are a progeny of 
a single parental cross

Flower color A plant

Bacterial colonies in each of six 
petri dishes

Number of colonies A petri dish

Notation for Variables and Observations

We will adopt a notational convention to distinguish between a variable and an
observed value of that variable. We will denote variables by uppercase letters such
as Y. We will denote the observations themselves (that is, the data) by lowercase
letters such as y. Thus, we distinguish, for example, between (the
variable) and lb (the observation). This distinction will be helpful in
explaining some fundamental ideas concerning variability.

y = 7.9
Y = birthweight
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Figure 2.2.1 Bar chart of
color of 182 poinsettias

Exercises 2.1.1–2.1.4

For each of the following settings in Exercises 2.1.1–2.1.4,
(i) identify the variable(s) in the study, (ii) for each vari-
able tell the type of variable (e.g., categorical and ordinal,
discrete, etc.), (iii) identify the observational unit (the
thing sampled), and (iv) determine the sample size.

2.1.1
(a) A paleontologist measured the width (in mm) of the

last upper molar in 36 specimens of the extinct mam-
mal Acropithecus rigidus.

(b) The birthweight, date of birth, and the mother’s race
were recorded for each of 65 babies.

2.1.2
(a) A physician measured the height and weight of each

of 37 children.

(b) During a blood drive, a blood bank offered to check
the cholesterol of anyone who donated blood.

A total of 129 persons donated blood. For each of
them, the blood type and cholesterol levels were
recorded.

2.1.3
(a) A biologist measured the number of leaves on each

of 25 plants.

(b) A physician recorded the number of seizures that
each of 20 patients with severe epilepsy had during
an eight-week period.

2.1.4
(a) A conservationist recorded the weather (clear, partly

cloudy, cloudy, rainy) and number of cars parked at
noon at a trailhead on each of 18 days.

(b) An enologist measured the pH and residual sugar
content (g/l) of seven barrels of wine.

2.2 Frequency Distributions
A first step toward understanding a set of data on a given variable is to explore the
data and describe the data in summary form. In this chapter we discuss three mutu-
ally complementary aspects of summary data description: frequency distributions,
measures of center, and measures of dispersion. These tell us about the shape,
center, and spread of the data.

A frequency distribution is simply a display of the frequency, or number of
occurrences, of each value in the data set. The information can be presented in
tabular form or, more vividly, with a graph. A bar chart is a simple graphic showing
the categories that a categorical variable takes on and the number of observations in
each category for the data in the sample. Here are two examples of frequency distri-
butions for categorical data.

Color of Poinsettias Poinsettias can be red, pink, or white. In one investigation of the
hereditary mechanism controlling the color, 182 progeny of a certain parental cross
were categorized by color.1 The bar graph in Figure 2.2.1 is a visual display of the
results given in Table 2.2.1. �

Example
2.2.1

Table 2.2.1 Color of one hundred
eighty-two poinsettias

Color
Frequency 

(number of plants)

Red 108

Pink 34

White 40

Total 182
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School Bags and Neck Pain Physiologists in Australia were concerned that carrying a
school bag loaded with heavy books was a cause of neck pain in adolescents, so they
asked a sample of 585 teenage girls how often they get neck pain when carrying
their school bag (e.g., never, almost never, sometimes, often, always). A summary of
the results reported to them is given in Table 2.2.2 and displayed as a bar graph in
Figure 2.2.2(a).2 As the variable incidence is an ordinal categorical variable, our
tables and graphs should respect the natural ordering. Figure 2.2.2(b) shows the
same data but with the categories in alphabetical order (a default setting for much
software), which obscures the information in the data. �

Example
2.2.2

Table 2.2.2 Neck pain associated with carrying
a school bag

Incidence
Frequency 

(number of girls)

Never 179

Almost never 159

Sometimes 173

Often 64

Always 10

Total 585
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Figure 2.2.2 (a) Bar
chart of incidence of
neck pain reported by 
585 adolescents; (b) the
same data but with the
categories in alphabetical
order
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Table 2.2.3 Infant mortality in 12 South
American countries

Country Infant mortality rate

Argentina 11.4

Bolivia 44.7

Brazil 22.6

Chile 7.7

Colombia 18.9

Ecuador 20.9

Guyana 30.0

Paraguay 24.7

Peru 28.6

Suriname 18.8

Uruguay 11.3

Venezuela 26.5

0 10 20
Infant mortality rate

30 40 50

Figure 2.2.3 Dotplot of infant mortality in 12 South
American countries

A dotplot is a simple graph that can be used to show the distribution of a
numeric variable when the sample size is small. To make a dotplot, we draw a num-
ber line covering the range of the data and then put a dot above the number line for
each observation, as the following example shows.

Infant Mortality Table 2.2.3 shows the infant mortality rate (infant deaths per 1,000
live births) in each of 12 countries in South America, as of 2009.3 The distribution is
shown in Figure 2.2.3. �

Example
2.2.3

When two or more observations take on the same value, we stack the dots in a
dotplot on top of each other. This gives an effect similar to the effect of the bars in a
bar chart. If we create bars, in place of the stacks of dots, we then have a histogram.
A histogram is like a bar chart, except that a histogram displays a numeric variable,
which means that there is a natural order and scale for the variable. In a bar chart
the amount of space between the bars (if any) is arbitrary, since the data being
displayed are categorical. In a histogram the scale of the variable determines the
placement of the bars. The following example shows a dotplot and a histogram for
a frequency distribution.

Litter Size of Sows A group of thirty-six 2-year-old sows of the same breed ( Duroc,
Yorkshire) were bred to Yorkshire boars. The number of piglets surviving to 

21 days of age was recorded for each sow.4 The results are given in Table 2.2.4 and
displayed as a dotplot in Figure 2.2.4 and as a histogram in Figure 2.2.5. �

1
4

3
4Example

2.2.4
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Figure 2.2.5 Histogram of number of surviving
piglets of 36 sows
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Figure 2.2.4 Dotplot of number of
surviving piglets of 36 sows

Table 2.2.4 Number of surviving piglets
of 36 sows

Number of piglets
Frequency 

(number of sows)

5 1

6 0

7 2

8 3

9 3

10 9

11 8

12 5

13 3

14 2

Total 36

Relative Frequency

The frequency scale is often replaced by a relative frequency scale:

The relative frequency scale is useful if several data sets of different sizes (n’s) are to
be displayed together for comparison. As another option, a relative frequency can
be expressed as a percentage frequency. The shape of the display is not affected by
the choice of frequency scale, as the following example shows.

Color of Poinsettias The poinsettia color distribution of Example 2.2.1 is expressed
as frequency, relative frequency, and percent frequency in Table 2.2.5 and
Figure 2.2.6. �

Example
2.2.5

Relative frequency =
Frequency

n

Table 2.2.5 Color of one hundred eighty-two poinsettias

Color Frequency
Relative
frequency

Percent
frequency

Red 108 .59 59

Pink 34 .19 19

White 40 .22 22

Total 182 1.00 100
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Figure 2.2.6 Bar chart of
poinsettia colors on three
scales:
(a) Frequency
(b) Relative frequency
(c) Percent frequency

Grouped Frequency Distributions

In the preceding examples, simple ungrouped frequency distributions provided con-
cise summaries of the data. For many data sets, it is necessary to group the data in
order to condense the information adequately. (This is usually the case with contin-
uous variables.) The following example shows a grouped frequency distribution.

Serum CK Creatine phosphokinase (CK) is an enzyme related to muscle and brain
function. As part of a study to determine the natural variation in CK concentration,
blood was drawn from 36 male volunteers. Their serum concentrations of CK
(measured in U/l) are given in Table 2.2.6.5 Table 2.2.7 shows these data grouped
into classes. For instance, the frequency of the class [20,40) (all values in the interval

) is 1, which means that one CK value fell in this range. The grouped
frequency distribution is displayed as a histogram in Figure 2.2.7. �

20 … y 6 40

Example
2.2.6

Table 2.2.6 Serum CK values for 36 men

121 82 100 151 68 58

95 145 64 201 101 163

84 57 139 60 78 94

119 104 110 113 118 203

62 83 67 93 92 110

25 123 70 48 95 42

Table 2.2.7 Frequency distribution of serum 
CK values for 36 men

Serum CK (U/l)
Frequency 

(number of men)

[20,40) 1

[40,60) 4

[60,80) 7

[80,100) 8

[100,120) 8

[120,140) 3

[140,160) 2

[160,180) 1

[180,200) 0

[200,220) 2

Total 36
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A grouped frequency distribution should display the essential features of
the data. For instance, the histogram of Figure 2.2.7 shows that the average CK
value is about 100 U/l, with the majority of the values falling between 60 and
140 U/l. In addition, the histogram shows the shape of the distribution. Note that the
CK values are piled up around a central peak, or mode. On either side of this mode,
the frequencies decline and ultimately form the tails of the distribution. These
shape features are labeled in Figure 2.2.8. The CK distribution is not symmetric but
is a bit skewed to the right, which means that the right tail is more stretched out than
the left.*

Left tail

Mode

Right tail

Figure 2.2.8 Shape
features of the CK
distribution

*To help remember which tail of a skewed distribution is the longer tail, think of skew as stretch. Which side of
the distribution is more stretched away from the center? A distribution that is skewed to the right is one in
which the right tail stretches out more than the left.

When making a histogram, we need to decide how many classes to have and
how wide the classes should be. If we use computer software to generate a his-
togram, the program will choose the number of classes and the class width for us, but
most software allows the user to change the number of classes and to specify the
class width. If a data set is large and is quite spread out, it is a good idea to look at
more than one histogram of the data, as is done in Example 2.2.7.

Heights of Students A sample of 510 college students were asked how tall they were.
Note that they were not measured; rather, they just reported their heights.6

Figure 2.2.9 shows the distribution of the self-reported values, using 7 classes and a

Example
2.2.7
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Figure 2.2.9 Heights of
students, using 7 classes
(class width = 3)

*Strictly speaking, between 60 U/l and 99 U/l, inclusive.
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Figure 2.2.10 Heights of students, using 18 classes
(class width = 1.1)
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Figure 2.2.11 Heights of students, using 37 classes
(class width = 0.5)

class width of 3 (inches). By using only 7 classes, the distribution appears to be
reasonably symmetric, with a single peak around 66 inches.

Figure 2.2.10 shows the height data, but in a histogram that uses 18 classes and a
class width of 1.1. This view of the data shows two modes—one for women and one
for men.

Figure 2.2.11 shows the height data again, this time using 37 classes, each of
width 0.5. Using such a large number of classes makes the distribution look jagged.
In this case, we see an alternating pattern between classes with lots of observations
and classes with few observations. In the middle of the distribution we see that there
were many students who reported a height of 63 inches, few who reported a height
of 63.5 inches, many who reported a height of 64 inches, and so on. It seems that
most students round off to the nearest inch! �

Interpreting Areas in a Histogram

A histogram can be looked at in two ways. The tops of the bars sketch out the shape
of the distribution. But the areas within the bars also have a meaning. The area of
each bar is proportional to the corresponding frequency. Consequently, the area of
one or several bars can be interpreted as expressing the number of observations in
the classes represented by the bars. For example, Figure 2.2.12 shows a histogram of
the CK distribution of Example 2.2.6. The shaded area is 42% of the total area in all
the bars.Accordingly, 42% of the CK values are in the corresponding classes; that is,
15 of 36 or 42% of the values are between 60 U/I and 100 U/l.*
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The area interpretation of histograms is a simple but important idea. In our
later work with distributions we will find the idea to be indispensable.

Shapes of Distributions

When discussing a set of data, we want to describe the shape, center, and spread of the
distribution. In this section we concentrate on the shapes of frequency distributions
and illustrate some of the diversity of distributions encountered in the life sciences.
The shape of a distribution can be indicated by a smooth curve that approximates the
histogram, as shown in Figure 2.2.13.

Figure 2.2.13
Approximation of a
histogram by a smooth
curve

Some distributional shapes are shown in Figure 2.2.14. A common shape for
biological data is unimodal (has one mode) and is somewhat skewed to the right, as
in (c). Approximately bell-shaped distributions, as in (a), also occur. Sometimes a
distribution is symmetric but differs from a bell in having long tails; an exaggerated
version is shown in (b). Left-skewed (d) and exponential (e) shapes are less com-
mon. Bimodality (two modes), as in (f), can indicate the existence of two distinct
subgroups of observational units.

Notice that the shape characteristics we are emphasizing, such as number of
modes and degree of symmetry, are scale free; that is, they are not affected by the
arbitrary choices of vertical and horizontal scale in plotting the distribution. By con-
trast, a characteristic such as whether the distribution appears short and fat, or tall
and skinny, is affected by how the distribution is plotted and so is not an inherent
feature of the biological variable.

The following three examples illustrate biological frequency distributions with
various shapes. In the first example, the shape provides evidence that the distribu-
tion is in fact biological rather than nonbiological.
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(a) Symmetric, bell-shaped

(c) Skewed to the right

(b) Symmetric, not bell-shaped

(d) Skewed to the left

(e) Exponential (f) Bimodal

Figure 2.2.14 Shapes of distributions

Microfossils In 1977, paleontologists discovered microscopic fossil structures, resem-
bling algae, in rocks 3.5 billion years old. A central question was whether these
structures were biological in origin. One line of argument focused on their size dis-
tribution, which is shown in Figure 2.2.15. This distribution, with its unimodal and
rather symmetric shape, resembles that of known microbial populations, but not
that of known nonbiological structures.7 �

Example
2.2.8
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Figure 2.2.15 Sizes of
microfossils
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intervals between electrical
discharges in rat muscle
cells

Brain Weight In 1888, P. Topinard published data on the brain weights of hundreds
of French men and women. The data for males and females are shown in
Figure 2.2.17(a) and (b). The male distribution is fairly symmetric and bell shaped;
the female distribution is somewhat skewed to the right. Part (c) of the figure shows
the brain weight distribution for males and females combined.This combined distri-
bution is slightly bimodal.9 �

Example
2.2.10

Cell Firing Times A neurobiologist observed discharges from rat muscle cells grown
in culture together with nerve cells. The time intervals between 308 successive dis-
charges were distributed as shown in Figure 2.2.16. Note the exponential shape of
the distribution.8 �

Example
2.2.9
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Sources of Variation

In interpreting biological data, it is helpful to be aware of sources of variability. The
variation among observations in a data set often reflects the combined effects of
several underlying factors. The following two examples illustrate such situations.

Weights of Seeds In a classic experiment to distinguish environmental from
genetic influence, a geneticist weighed seeds of the princess bean Phaseolus vulgaris.
Figure 2.2.18 shows the weight distributions of (a) 5,494 seeds from a commercial
seed lot, and (b) 712 seeds from a highly inbred line that was derived from a single
seed from the original lot. The variability in (a) is due to both environmental and
genetic factors; in (b), because the plants are nearly genetically identical, the varia-
tion in weights is due largely to environmental influence.10 Thus, there is less
variability in the inbred line. �

Example
2.2.11

0 10 20

ALT (U/ l)

(a)

30 40 50

0

25

F
re

qu
en

cy

50

0 10 20
ALT (U/ l)

(b)

30 40 50
0

20

F
re

qu
en

cy 40

Figure 2.2.19 Distribution
of serum ALT
measurements (a) for 129
volunteers; (b) for 109
assays of the same
specimen

Serum ALT Alanine aminotransferase (ALT) is an enzyme found in most human
tissues. Part (a) of Figure 2.2.19 shows the serum ALT concentrations for 
129 adult volunteers. The following are potential sources of variability among the
measurements:

1. Interindividual
(a) Genetic
(b) Environmental

2. Intraindividual
(a) Biological: changes over time
(b) Analytical: imprecision in assay

The effect of the last source—analytical variation—can be seen in part (b) of
Figure 2.2.19, which shows the frequency distribution of 109 assays of the same
specimen of serum; the figure shows that the ALT assay is fairly imprecise.11

�

Example
2.2.12
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Exercises 2.2.1–2.2.9

2.2.1 A paleontologist measured the width (in mm)
of the last upper molar in 36 specimens of the extinct
mammal Acropithecus rigidus. The results were as
follows:12

Construct a dotplot of the data.

2.2.3 Consider the data presented in Exercise 2.2.2. Con-
struct a frequency distribution and display it as a table
and as a histogram.

2.2.4 A dendritic tree is a branched structure that
emanates from the body of a nerve cell.As part of a study
of brain development, 36 nerve cells were taken from the
brains of newborn guinea pigs. The investigators counted
the number of dendritic branch segments emanating
from each nerve cell. The numbers were as follows:14

6.1 5.7 6.0 6.5 6.0 5.7
6.1 5.8 5.9 6.1 6.2 6.0
6.3 6.2 6.1 6.2 6.0 5.7
6.2 5.8 5.7 6.3 6.2 5.7
6.2 6.1 5.9 6.5 5.4 6.7
5.9 6.1 5.9 5.9 6.1 6.1

6.8 8.4 8.7 11.9 14.2 18.8
9.9 4.1 9.7 12.7 5.2 7.8
7.8 7.4 7.3 10.6 14.5 10.7

(a) Construct a frequency distribution and display it as a
table and as a histogram.

(b) Describe the shape of the distribution.

2.2.2 In a study of schizophrenia, researchers measured
the activity of the enzyme monoamine oxidase (MAO) in
the blood platelets of 18 patients. The results (expressed
as nmoles benzylaldehyde product per 108 platelets)
were as follows:13

Construct a dotplot of the data.

2.2.5 Consider the data presented in Exercise 2.2.4. Con-
struct a frequency distribution and display it as a table
and as a histogram.

2.2.6 The total amount of protein produced by a dairy
cow can be estimated from periodic testing of her milk.
The following are the total annual protein production
values (lb) for twenty-eight 2-year-old Holstein cows.
Diet, milking procedures, and other conditions were the
same for all the animals.15

23 30 54 28 31 29 34 35 30
27 21 43 51 35 51 49 35 24
26 29 21 29 37 27 28 33 33
23 37 27 40 48 41 20 30 57

Construct a frequency distribution and display it as a
table and as a histogram.

2.2.8 Agronomists measured the yield of a variety of
hybrid corn in 16 locations in Illinois. The data, in bushels
per acre, were17

425 481 477 434 410 397 438
545 528 496 502 529 500 465
539 408 513 496 477 445 546
471 495 445 565 499 508 426

Construct a frequency distribution and display it as a
table and as a histogram.

2.2.7 For each of 31 healthy dogs, a veterinarian meas-
ured the glucose concentration in the anterior chamber
of the right eye and also in the blood serum. The follow-
ing data are the anterior chamber glucose measurements,
expressed as a percentage of the blood glucose.16

81 85 93 93 99 76 75 84
78 84 81 82 89 81 96 82
74 70 84 86 80 70 131 75
88 102 115 89 82 79 106

241 230 207 219 266 167
204 144 178 158 153
187 181 196 149 183

(a) Construct a dotplot of the data.

(b) Describe the shape of the distribution.

2.2.9 (Computer problem) Trypanosomes are parasites
that cause disease in humans and animals. In an early
study of trypanosome morphology, researchers measured
the lengths of 500 individual trypanosomes taken from
the blood of a rat. The results are summarized in the
accompanying frequency distribution.18

LENGTH 
( m)m

FREQUENCY 
(NUMBER OF 
INDIVIDUALS)

LENGTH 
( m)m

FREQUENCY 
(NUMBER OF 
INDIVIDUALS)

15 1 27 36
16 3 28 41
17 21 29 48
18 27 30 28
19 23 31 43
20 15 32 27
21 10 33 23
22 15 34 10
23 19 35 4
24 21 36 5
25 34 37 1
26 44 38 1
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*Numerical measures based on the entire population are called parameters, which are discussed in greater detail
in Section 2.8.

(a) Construct a histogram of the data using 24 classes
(i.e., one class for each integer length, from 15 to 38).

(b) What feature of the histogram suggests the interpre-
tation that the 500 individuals are a mixture of two
distinct types?

2.3 Descriptive Statistics: Measures of Center
For categorical data, the frequency distribution provides a concise and complete sum-
mary of a sample. For numeric variables, the frequency distribution can usefully be
supplemented by a few numerical measures. A numerical measure calculated from
sample data is called a statistic.* Descriptive statistics are statistics that describe a set
of data. Usually the descriptive statistics for a sample are calculated in order to pro-
vide information about a population of interest (see Section 2.8). In this section we
discuss measures of the center of the data. There are several different ways to define
the “center” or “typical value” of the observations in a sample. We will consider the
two most widely used measures of center: the median and the mean.

The Median

Perhaps the simplest measure of the center of a data set is the sample median. The
sample median is the value that most nearly lies in the middle of the sample—it is
the data value that splits the ordered data into two equal halves.To find the median,
first arrange the observations in increasing order. In the array of ordered observa-
tions, the median is the middle value (if n is odd) or midway between the two 
middle values (if n is even). We denote the median of the sample by the symbol 
(read “y-tilde”). Example 2.3.1 illustrates these definitions.

Weight Gain of Lambs The following are the two-week weight gains (lb) of six young
lambs of the same breed that had been raised on the same diet:19

The ordered observations are

The median weight gain is

The median divides the sorted data into two equal pieces (the same number of
observations fall above and below the median). Figure 2.3.1 shows a dotplot of the
lamb weight-gain data, along with the location of . �y

'

y
' =

10 + 11
2

= 10.5 lb

1 2 10 11 13 19

11 13 19 2 10 1

Example
2.3.1

y
'

0 5 10

Weight gain (lb)

15 20
~y

Figure 2.3.1 Plot of the
lamb weight-gain data

(c) Construct a histogram of the data using only 6 classes.
Discuss how this histogram gives a qualitatively differ-
ent impression than the histogram from part (a).
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Weight Gain of Lambs Suppose the sample contained one more lamb, with the seven
ranked observations as follows:

For this sample, the median weight gain is

(Notice that in this example there are two lambs whose weight gain is equal to the
median. The fourth observation—the second 10—is the median.) �

A more formal way to define the median is in terms of rank position in the
ordered array (counting the smallest observation as rank 1, the next as 2, and so on).
The rank position of the median is equal to

Thus, if , we calculate , so that the median is the fourth largest
observation; if , we have , so that the median is midway
between the third and fourth largest observations. Note that the formula

does not give the median, it gives the location of the median within the
ordered list of the data.

The Mean

The most familiar measure of center is the ordinary average or mean (sometimes
called the arithmetic mean). The mean of a sample (or “the sample mean”) is the
sum of the observations divided by the number of observations. If we denote a vari-
able by Y, then we denote the observations in a sample by and we
denote the mean of the sample by the symbol (read “y-bar”). Example 2.3.3 illus-
trates this notation.

Weight Gain of Lambs The following are the data from Example 2.3.1:

Here , and so on, and . The sum of the observations is
. We can write this using “summation notation” as

. The symbol means to “add up the yi’s.” Thus, when 
. In this case we get 

.
The mean weight gain of the six lambs in this sample is

The Sample Mean The general definition of the sample mean is

where the yi’s are the observations in the sample and n is the sample size (that
is, the number of yi’s).

yq =
a
n

i=1
yi

n

= 9.33 lb

=
56
6

yq =
11 + 13 + 19 + 2 + 10 + 1

6

11 + 13 + 19 + 2 + 10 + 1 = 56
gni=1yi =gni=1yi = y1 + y2 + y3 + y4 + y5 + y6

n = 6,gni=1yigni=1yi = 56
11 + 13 + Á +  1 = 56

y6 = 1y1 = 11, y2 = 13

11 13 19 2 10 1

Example
2.3.3

yq
y1, y2, Á , yn

(0.5)(n + 1)

(0.5)(n + 1) = 3.5n = 6
(0.5)(n + 1) = 4n = 7

(0.5)(n + 1)

y
' = 10 lb

1 2 10 10 11 13 19

Example
2.3.2
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0
5

10

Weight gain (lb)

15
20

y~

Figure 2.3.2 Plot of the lamb weight-gain
data with the sample median as the fulcrum
of a balance

While the median divides the data into two equal pieces (i.e., the same number
of observations above and below), the mean is the “point of balance” of the data.
Figure 2.3.2 shows a dotplot of the lamb weight-gain data, along with the location of

. If the data points were children on a weightless seesaw, then the seesaw would tip
if the fulcrum were placed at despite there being the same number of children on
either side.The children on the left side (below ) tend to sit further from than the
children on the right (above ) causing the seesaw to tip. However, if the fulcrum
were placed at , the seesaw would exactly balance as in Figure 2.3.3. �

The difference between a data point and the mean is called a deviation:
. The mean has the property that the sum of the deviations from

the mean is zero—that is, . In this sense, the mean is a center of the
distribution—the positive deviations balance the negative deviations.

Weight Gain of Lambs For the lamb weight-gain data, the deviations are as follows:

The sum of the deviations is 
�

Robustance A statistic is said to be robust or resistant if the value of the statistic is
relatively unaffected by changes in a small portion of the data, even if the changes
are dramatic ones. The median is a robust statistic, but the mean is not robust
because it can be greatly shifted by changes in even one observation. Example 2.3.5
illustrates this behavior.

Weight Gain of Lambs Recall that for the lamb weight-gain data

we found

Suppose now that the observation 19 is changed, or even omitted. How would the
mean and median be affected? You can visualize the effect by imagining moving or
removing the right-hand dot in Figure 2.3.3. Clearly the mean could change a great
deal; the median would generally be less affected. For instance,

y
' = 10.5yq = 9.3 and 

1 2 10 11 13 19

Example
2.3.5

-  8.33 = 0.
gni=1(yi - yq) = 1.67 + 3.67 + 9.67 - 7.33 + 0.67

deviation6 = y6 - yq = 1 - 9.33 = -8.33
deviation5 = y5 - yq = 10 - 9.33 = 0.67
deviation4 = y4 - yq = 2 - 9.33 = -7.33
deviation3 = y3 - yq = 19 - 9.33 = 9.67
deviation2 = y2 - yq = 13 - 9.33 = 3.67
deviation1 = y1 - yq = 11 - 9.33 = 1.67

Example
2.3.4

gni=1(yi - yq) = 0
deviationi = yi - yq

yq
y
' y

'
y
'y

'y
'

0 5 10

Weight gain (lb)

15 20

y

Figure 2.3.3 Plot of the lamb weight-gain
data with the sample mean as the fulcrum of
a balance
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If the 19 is changed to 12, the mean becomes 8.2 and the median does not change.

If the 19 is omitted, the mean becomes 7.4 and the median becomes 10.

These changes are not wild ones; that is, the changed samples might well have arisen
from the same feeding experiment. Of course, a huge change, such as changing the
19 to 100, would shift the mean very drastically. Note that it would not shift the
median at all. �

Visualizing the Mean and Median

We can visualize the mean and the median in relation to the histogram of a distribu-
tion. The median divides the area under the histogram roughly in half because it
divides the observations roughly in half [“roughly” because some observations may
be tied at the median, as in Example 2.3.3(b), and because the observations within
each class are not uniformly distributed across the class]. The mean can be visual-
ized as the point of balance of the histogram: If the histogram were made out of
plywood, it would balance if supported at the mean.

If the frequency distribution is symmetric, the mean and the median are equal
and fall in the center of the distribution. If the frequency distribution is skewed,
both measures are pulled toward the longer tail, but the mean is usually pulled far-
ther than the median. The effect of skewness is illustrated by the following example.

Cricket Singing Times Male Mormon crickets (Anabrus simplex) sing to attract mates.
A field researcher measured the duration of 51 unsuccessful songs—that is, the time
until the singing male gave up and left his perch.20 Figure 2.3.4 shows the histogram
of the 51 singing times. Table 2.3.1 gives the raw data. The median is 3.7 min and the
mean is 4.3 min. The discrepancy between these measures is due largely to the long
straggly tail of the distribution; the few unusually long singing times influence the
mean, but not the median. �

Example
2.3.6
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Figure 2.3.4 Histogram of cricket singing times

Table 2.3.1 Fifty-one cricket singing times (min)

4.3 3.9 17.4 2.3 0.8 1.5 0.7 3.7

24.1 9.4 5.6 3.7 5.2 3.9 4.2 3.5

6.6 6.2 2.0 0.8 2.0 3.7 4.7

7.3 1.6 3.8 0.5 0.7 4.5 2.2

4.0 6.5 1.2 4.5 1.7 1.8 1.4

2.6 0.2 0.7 11.5 5.0 1.2 14.1

4.0 2.7 1.6 3.5 2.8 0.7 8.6

Mean versus Median

Both the mean and the median are usually reasonable measures of the center of a
data set. The mean is related to the sum; for example, if the mean weight gain of 100
lambs is 9 lb, then the total weight gain is 900 lb, and this total may be of primary
interest since it translates more or less directly into profit for the farmer. In some
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situations the mean makes very little sense. Suppose, for example, that the observa-
tions are survival times of cancer patients on a certain treatment protocol, and that
most patients survive less than 1 year, while a few respond well and survive for 5 or
even 10 years. In this case, the mean survival time might be greater than the survival
time of most patients; the median would more nearly represent the experience of a
“typical” patient. Note also that the mean survival time cannot be computed until
the last patient has died; the median does not share this disadvantage. Situations in
which the median can readily be computed, but the mean cannot, are not uncom-
mon in bioassay, survival, and toxicity studies.

We have noted that the median is more resistant than the mean. If a data set
contains a few observations rather distant from the main body of the data—that is, a
long “straggly” tail—then the mean may be unduly influenced by these few unusual
observations. Thus, the “tail” may “wag the dog”—an undesirable situation. In such
cases, the resistance of the median may be advantageous.

An advantage of the mean is that in some circumstances it is more efficient than
the median. Efficiency is a technical notion in statistical theory; roughly speaking, a
method is efficient if it takes full advantage of all the information in the data. Partly
because of its efficiency, the mean has played a major role in classical methods in
statistics.

Exercises 2.3.1–2.3.16

2.3.1 Invent a sample of size 5 for which the sample
mean is 20 and not all the observations are equal.

2.3.2 Invent a sample of size 5 for which the sample
mean is 20 and the sample median is 15.

2.3.3 A researcher applied the carcinogenic (cancer-
causing) compound benzo(a)pyrene to the skin of
five mice, and measured the concentration in the liver
tissue after 48 hours. The results (nmol/gm) were as
follows:21

Determine the mean and the median.

2.3.4 Consider the data from Exercise 2.3.3. Do the cal-
culated mean and median support the claim that, in
general, liver tissue concentration after 48 hours differs
from 6.3 nmol/gm?

2.3.5 Six men with high serum cholesterol participated
in a study to evaluate the effects of diet on cholesterol
level. At the beginning of the study their serum choles-
terol levels (mg/dl) were as follows: 22

Determine the mean and the median.

2.3.6 Consider the data from Exercise 2.3.5. Suppose an
additional observation equal to 400 were added to the
sample. What would be the mean and the median of the
seven observations?

366  327  274  292  274  230

6.3 5.9 7.0 6.9 5.9

2.3.7 The weight gains of beef steers were measured
over a 140-day test period. The average daily gains
(lb/day) of 9 steers on the same diet were as follows:23

Determine the mean and median.

2.3.8 Consider the data from Exercise 2.3.7. Are the cal-
culated mean and median consistent with the claim that,
in general, steers gain 3.5 lb/day? Are they consistent
with a claim of 4.0 lb/day?

2.3.9 Consider the data from Exercise 2.3.7. Suppose an
additional observation equal to 2.46 were added to the
sample. What would be the mean and the median of the
10 observations?

2.3.10 As part of a classic experiment on mutations,
10 aliquots of identical size were taken from the same
culture of the bacterium E. coli. For each aliquot, the
number of bacteria resistant to a certain virus was deter-
mined. The results were as follows:24

(a) Construct a frequency distribution of these data and
display it as a histogram.

(b) Determine the mean and the median of the data and
mark their locations on the histogram.

14   26   16   20   13
14   15   13   21   15

3.36  3.67  3.24  3.27
3.89  3.51  3.97  3.31  3.21
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2.3.11 The accompanying table gives the litter size (num-
ber of piglets surviving to 21 days) for each of 36 sows (as
in Example 2.2.4). Determine the median litter size.
(Hint: Note that there is one 5, but there are two 7’s, three
8’s, etc.)

NUMBER OF PIGLETS FREQUENCY (NUMBER OF SOWS)

5 1

6 0

7 2

8 3

9 3

10 9

11 8

12 5

13 3

14 2

Total 36

20 30 40 50 60 70 80 90

0 10 20 30 40 50 602.3.12 Consider the data from Exercise 2.3.11. Deter-
mine the mean of the 36 observations. (Hint: Note that
there is one 5 but there are two 7’s, three 8’s, etc. Thus,

)

2.3.13 Here is a histogram.

+ Á
©yi = 5 + 7 + 7 + 8 + 8 + 8 + Á = 5 + 2(7) + 3(8)

(a) Estimate the median of the distribution.

(b) Estimate the mean of the distribution.

2.3.14 Consider the histogram from Exercise 2.3.13. By
“reading” the histogram, estimate the percentage of
observations that are less than 40. Is this percentage clos-
est to 15%, 25%, 35%, or 45%? (Note: The frequency
scale is not given for this histogram, because there is no
need to calculate the number of observations in each
class. Rather, the percentage of observations that are less
than 40 can be estimated by looking at area.)

2.3.15 Here is a histogram.

(a) Estimate the median of the distribution.

(b) Estimate the mean of the distribution.

2.3.16 Consider the histogram from Exercise 2.3.15. By
“reading” the histogram, estimate the percentage of
observations that are greater than 45. Is this percentage
closest to 15%, 25%, 35%, or 45%? (Note: The frequency
scale is not given for this histogram, because there is no
need to calculate the number of observations in each
class. Rather, the percentage of observations that are
greater than 45 can be estimated by looking at area.)

2.4 Boxplots
One of the most efficient graphics, both for examining a single distribution and for
making comparisons between distributions, is known as a boxplot, which is the topic
of this section. Before discussing boxplots, however, we need to discuss quartiles.

Quartiles and the Interquartile Range

The median of a distribution splits the distribution into two parts, a lower part and
an upper part.The quartiles of a distribution divide each of these parts in half, there-
by dividing the distribution into four quarters. The first quartile, denoted by Q1, is
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*Some authors use other definitions of quartiles, as does some computer software. A common alternative defi-
nition is to say that the first quartile has rank position (.25)( ) and that the third quartile has rank position
(.75)( ). Thus, if , the first quartile would have rank position (.25) —that is, to find the
first quartile we would have to interpolate between the second and third largest observations. If n is large, then
there is little practical difference between the definitions that various authors use.

(11) = 2.75n = 10n + 1
n + 1

the median of the data values in the lower half of the data set. The third quartile,
denoted by Q3, is the median of the data values in the upper half of the data set.*
The following example illustrates these definitions.

Blood Pressure The systolic blood pressures (mm Hg) of seven middle-aged men
were as follows:25

Putting these values in rank order, the sample is

The median is the fourth largest observation, which is 132. There are three data
points in the lower part of the distribution: 113, 124, and 124. The median of these
three values is 124. Thus, the first quartile, Q1, is 124.

Likewise, there are three data points in the upper part of the distribution: 146,
151 and 170. The median of these three values is 151. Thus, the third quartile, Q3,
is 151.

�

Note that the median is not included in either the lower part or the upper part
of the distribution. If the sample size, n, is even, then exactly one-half of the observa-
tions are in the lower part of the distribution and one-half are in the upper part.

The interquartile range is the difference between the first and third quartiles
and is abbreviated as IQR: . For the blood pressure data in
Example 2.4.1, the IQR is .

Pulse The pulses of 12 college students were measured.26 Here are the data,
arranged in order, with the position of the median indicated by a dashed line:

The median is . There are six observations in the lower part of the 

distribution: 62, 64, 68, 70, 70, 74. Thus, the first quartile is the average of the third
and fourth largest data values:

There are six observations in the upper part of the distribution: 74, 76, 76, 78, 78, 80.
Thus, the third quartile is the average of the ninth and tenth largest data values (the
third and fourth values in the upper part of the distribution):

Q3 =
76 + 78

2
= 77

Q1 =
68 + 70

2
= 69

74 + 74
2

= 74

62  64  68  70  70  74 � 74  76  76  78  78  80

Example
2.4.2

151 - 124 = 27
IQR = Q3 - Q1

113 124 124 132 146 151 170
c � c

first quartile median third quartile
Q1 Q3

113   124   124   132   146   151   170

151   124   132   170   146   124   113

Example
2.4.1



Thus, the interquartile range is

We have

The minimum pulse value is 62 and the maximum is 80. �

The minimum, the maximum, the median, and the quartiles, taken together, are
referred to as the five-number summary of the data.

Boxplots

A boxplot is a visual representation of the five-number summary. To make a box-
plot, we first make a number line; then we mark the positions minimum, Q1, the
median, Q3, and the maximum:

c median c
first quartile third quartile

Q1 Q3

62  64  68  70  70  74 � 74  76  76  78  78   80

IQR = 77 - 69 = 8
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Next, we make a box connecting the quartiles:
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Note that the interquartile range is equal to the length of the box. Finally, we
extend “whiskers” from Q1 down to the minimum and from Q3 up to the maximum:

60 65 70 75 80 85



Table 2.4.1 Radish growth, in mm, after three 
days in total darkness

15 20 11 30 33

20 29 35 8 10

22 37 15 25

*This and subsequent boxplots in our text are slightly stylized. Different computer packages present the plot
somewhat differently, but all boxplots have the same basic five-number summary.

A boxplot gives a quick visual summary of the distribution. We can immediately see
where the center of the data is from the line within the box that locates the median.
We see the spread of the total distribution, from the minimum up to the maximum,
as well as the spread of the middle half of the distribution—the interquartile
range—from the length of the box.The boxplot also gives an indication of the shape
of the distribution; the preceding boxplot has a long lower whisker, indicating that
the distribution is skewed to the left. Example 2.4.3 shows a boxplot for data from a
radish growth experiment.*

Radish Growth A common biology experiment involves growing radish seedlings
under various conditions. In one version of this experiment, a moist paper towel is
put into a plastic bag. Staples are put in the bag about one-third of the way from the
bottom of the bag and then radish seeds are placed along the staple seam. One
group of students kept their radish seed bags in total darkness for three days and
then measured the length, in mm, of each radish shoot at the end of the three days.
They collected 14 observations; the data are shown in Table 2.4.1.27

Example
2.4.3
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Here are the data in order from smallest to largest:

The quartiles are and . The median, is the average of the
two middle values of 20 and 22. Figure 2.4.1 shows a boxplot of the same data. �

y
' = 21,Q3 = 30Q1 = 15

c median     c
        first quartile       third quartile

Q1 Q3

8  10  11  15  15  20  20 � 22  25  29  30  33  35  37

0 10 20
Growth: darkness

30 40

Figure 2.4.1 Boxplot of
data on radish growth in
darkness

Outliers

Sometimes a data point differs so much from the rest of the data that it doesn’t seem
to belong with the other data. Such a point is called an outlier. An outlier might
occur because of a recording error or typographical error when the data are record-
ed, because of an equipment failure during an experiment, or for many other rea-
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sons. Outliers are the most interesting points in a data set. Sometimes outliers tell us
about a problem with the experimental protocol (e.g., an equipment failure or a fail-
ure of a patient to take his or her medication consistently during a medical trial). At
other times an outlier might alert us to the fact that a special circumstance has hap-
pened (e.g., an abnormally high or low value on a medical test could indicate the
presence of a disease in a patient).

People often use the term “outlier” informally. There is, however, a common
definition of “outlier” in statistical practice. To give a definition of outlier, we first
discuss what are known as fences. The lower fence of a distribution is

The upper fence of a distribution is

This means that the fences are located 1.5 IQRs (i.e., 1.5 the length of the box)
beyond the end of the box in a boxplot.

Note that the fences need not be data values; indeed, there might be no data
near the fences. The fences just locate limits within the sample distribution. These
limits give us a way to define outliers. An outlier is a data point that falls outside of
the fences. That is, if

or

then we call the point an outlier.

Pulse In Example 2.4.2 we saw that , and . Thus, the
lower fence is . Any point less than 57 would be an
outlier.The upper fence is .Any point greater than 89
would be an outlier. Since there are no points less than 57 or greater than 89, there
are no outliers in this data set. �

Radish Growth in Light The data in Example 2.4.3 were for radish seedlings grown in
total darkness. In another part of the experiment students grew 14 radish seedlings
in constant light. The observations, in order, are

Example
2.4.5

77 + 1.5 * 8 = 77 + 12 = 89
69 - 1.5 * 8 = 69 - 12 = 57

IQR = 8Q1 = 69, Q3 = 77Example
2.4.4

data point 7 Q3 + 1.5 * IQR

data point 6 Q1 - 1.5 * IQR

*

upper fence = Q3 + 1.5 * IQR

lower fence = Q1 - 1.5 * IQR

first quartile third quartile

median

Q1 Q3

3 5 5 7 7 10 10108 9 1410 2120

Thus, the median is is 7, and Q3 is 10. The interquartile range is

. The lower fence is , so any point
less than 2.5 would be an outlier.The upper fence is 
so any point greater than 14.5 is an outlier. Thus, the two largest observations in this
data set are outliers: 20 and 21. �

10 + 1.5 * 3 = 10 + 4.5 = 14.5,
7 - 1.5 * 3 = 7 - 4.5 = 2.5IQR = 10 - 7 = 3

9 + 10
2

= 9.5, Q1



Figure 2.4.3 shows a boxplot and a modified boxplot of the data on radish
seedlings grown in constant light.
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The method we have defined for identifying outliers allows the bulk of the data
to determine how extreme an observation must be before we consider it to be an
outlier, since the quartiles and the IQR are determined from the data themselves.
Thus, a point that is an outlier in one data set might not be an outlier in another data
set.We label a point as an outlier if it is unusual relative to the inherent variability in
the entire data set.

After an outlier has been identified, people are often tempted to remove the
outlier from the data set. In general this is not a good idea. If we can identify that an
outlier occurred due to an equipment error, for example, then we have good reason
to remove the outlier before analyzing the rest of the data. However, quite often
outliers appear in data sets without any identifiable, external reason for them. In
such cases, we simply proceed with our analysis, aware that there is an outlier pres-
ent. In some cases, we might want to calculate the mean, for example, with and with-
out the outlier and then report both calculations, to show the effect of the outlier in
the overall analysis. This is preferable to removing the outlier, which obscures the
fact that there was an unusual data point present. In presenting data graphically, we
can draw attention to outliers by using modified boxplots, which we now introduce.

Modified Boxplot

A standard variation on the idea of a boxplot is what is known as a modified box-
plot.A modified boxplot is a boxplot in which the outliers, if any, are graphed as sep-
arate points. The advantage of a modified boxplot is that it lets us quickly see where
the outliers are, if there are any.

To make a modified boxplot, we proceed as we did when first making a boxplot,
except for the last step. After drawing the box for the boxplot, we check to see if
there are outliers. If there are no outliers, then we extend whiskers from the box out
to the extremes (the minimum and the maximum). However, if there are outliers in
the upper part of the distribution, then we identify them with a dot or other plotting
symbol.We then extend a whisker from Q3 up to the largest data point that is not an
outlier. Likewise, if there are outliers in the lower part of the distribution, we identi-
fy them with asterisks and extend a whisker from Q1 down to the smallest observa-
tion that is not an outlier. Figure 2.4.2 shows the distribution of radish seedlings
grown under constant light. The area between the lower and upper fences is white,
while the outlying region is blue.

1.5 × IQR 1.5 × IQR

0 5 10 15 20 25

Figure 2.4.2 Dotplot and
boxplot of data on radish
growth in constant light.
The points in the blue
region are outliers.
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Most often, when people make boxplots, they make modified boxplots. Com-
puter software is typically programmed to produce a modified boxplot when the
user asks for a boxplot. Thus, we will use the term “boxplot” to mean “modified
boxplot.”

0

(b)

(a)

5 10 15 20 25

Figure 2.4.3 (a) Boxplot
of data on radish growth in
constant light; (b) modified
boxplot of radish growth
data

Exercises 2.4.1–2.4.8

2.4.1 Here are the data from Exercise 2.3.10 on the num-
ber of virus-resistant bacteria in each of 10 aliquots:

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) How large would an observation in this data set have
to be in order to be an outlier?

(d) Construct a (modified) boxplot of the data.

2.4.3 In a study of milk production in sheep (for use in
making cheese), a researcher measured the three-month
milk yield for each of 11 ewes. The yields (liters) were as
follows:28

6.8 8.4 8.7 11.9 14.2 18.8

9.9 4.1 9.7 12.7 5.2 7.8
7.8 7.4 7.3 10.6 14.5 10.7

14 15 13 21 15

14 26 16 20 13

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) How large would an observation in this data set have
to be in order to be an outlier?

2.4.2 Here are the 18 measurements of MAO activity
reported in Exercise 2.2.2:

56.5 89.8 110.1 65.6 63.7 82.6

75.1 91.5 102.9 44.4 108.1

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) Construct a (modified) boxplot of the data.

2.4.4 For each of the following histograms, use the his-
togram to estimate the median and the quartiles; then
construct a boxplot for the distribution.

(a)

0 20 40 60 80 100

0 20 40 60 80 100

(b)
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MINITAB’s descriptive statistics summary for a variable
stored in column 1 (Cl) of MINITAB’s worksheet.

Variable N Mean Median TrMean StDev SEMean

Cl 75 119.94 118.40 119.98 9.98 1.15

Variable Min Max Q1 Q3

Cl 95.16 145.11 113.59 127.42

(a) Use the MINITAB output to calculate the interquar-
tile range.

(b) Are there any outliers in this set of data?

2.4.8 Consider the data from Exercise 2.4.7. Use the five-
number summary that is given to create a boxplot of the
data.

2.4.6 The following boxplot shows the five-number sum-
mary for a data set. For these data the minimum is 35, Q1
is 42, the median is 49, Q3 is 56, and the maximum is 65. Is
it possible that no observation in the data set equals 42?
Explain your answer.

25 30 35 40 45 50 55 60

a

b

c

d

604020

2.4.5 The following histogram shows the same data that
are shown in one of the four boxplots. Which boxplot
goes with the histogram? Explain your answer.

35 40 45 50 55 60 65

2.4.7 Statistics software can be used to find the five-
number summary of a data set. Here is an example of

2.5 Relationships between Variables
In the previous sections we have studied univariate summaries of both numeric and
categorical variables. A univariate summary is a graphical or numeric summary of a
single variable.

The histogram, boxplot, sample mean, and median are all examples of univariate
summaries for numeric data. The bar chart, frequency, and relative frequency tables
are examples of univariate summaries for categorical data. In this section we pres-
ent some common bivariate graphical summaries used to examine the relationship
between pairs of variables.

Categorical–Categorical Relationships

To understand the relationship between two categorical variables, we first summa-
rize the data in a bivariate frequency table. Unlike the frequency table presented in
Section 2.2 (a univariate table), the bivariate frequency table has both rows and
columns—one dimension for each variable. The choice of which variable to list with
the rows and which to list with the columns is arbitrary. The following example
considers the relationship between two categorical variables: E. Coli Source and
Sampling Location.
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E. Coli Watershed Contamination In an effort to determine if there are differences in
the primary sources of fecal contamination at different locations in the Morro Bay
watershed, water specimens were collected at three primary locations that
feed into Morro Bay: Chorro Creek ( ), Los Osos Creek ( ), and
Baywood Seeps ( ).29 DNA fingerprinting techniques were used to deter-
mine the intestinal origin of the dominant E. coli strain in each water specimen.
E. coli origins were classified into the following five categories: bird, domestic pet
(e.g., cat or dog), farm animal (e.g., horse, cow, pig), human, or other terrestrial
mammal (e.g., fox, mouse, coyote . . .). Thus, each water specimen had two categori-
cal variables measured: location (Chorro, Los Osos, or Baywood) and E. coli
source (bird, . . . , terrestrial mammal). Table 2.5.1 presents a frequency table of
the data. �

n3 = 126
n2 = 256n1 = 241

n = 623

Example
2.5.1

Table 2.5.1 Frequency table of E. coli source by location

E. Coli Source

Location Bird
Domestic

pet
Farm 
animal Human

Terrestrial 
mammal Total

Chorro Creek 46 29 106 38 22 241

Los Osos Creek 79 56 32 63 26 256

Baywood 35 23 0 60 8 126

Total 160 108 138 161 56 623

While Table 2.5.1 provides a concise summary of the data, it is difficult to
discover any patterns in the data. Examining relative frequencies (row or column
proportions) often helps us make meaningful comparisons as seen in the following
example.

E. Coli Watershed Contamination Are domestic pets more of an E. coli problem
(i.e., source) at Chorro Creek or Baywood? Table 2.5.1 shows that the domestic pet
E. coli source count at Chorro (29) is higher than Baywood (23), so at first glance it
seems that pets are more problematic at Chorro. However, as more water specimens
were collected at Chorro ( ) than Baywood ( ), the relative fre-
quency of domestic pet source E. coli is actually lower at Chorro ( )
than Baywood ( ). Table 2.5.2 displays row percentages and thus
facilitates comparisons of E. coli sources among the locations. (Note that column
percentages would not be meaningful in this context since the water was sampled by
location and not by E. coli source.). �

23/126 = 0.183
29/241 = 0.120

n2 = 126n1 = 241

Example
2.5.2

Table 2.5.2 Bivariate relative frequency table (row percentages) 
of E. coli source by location

E. Coli Source

Location Bird
Domestic

pet
Farm 
animal Human

Terrestrial 
mammal Total

Chorro Creek 19.1 12.0 44.0 15.8 9.1 100

Los Osos Creek 30.9 21.9 12.5 24.6 10.2 100

Baywood 27.8 18.3 0.0 47.6 6.3 100

Total 25.7 17.3 22.2 25.8 9.0 100
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To visualize the data in Tables 2.5.1 and 2.5.2 we can examine stacked bar
charts.With a stacked frequency bar chart, the overall height of each bar reflects the
sample size for a level of the X categorical variable (e.g., location) while the height
or thickness of a slice that makes up a bar represents the count of the Y categorical
variable (e.g., E. coli source) for that level of X. Figure 2.5.1 displays a stacked bar
chart for the E. coli watershed count data in Table 2.5.1.

Chorro
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Los Osos Baywood

Terrestrial mammal

Human
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Domestic

Bird

Figure 2.5.1 Stacked
frequency chart of E. coli
source by location

Chorro
n1 = 241

0

20

40P
er

ce
nt

ag
e 60

80

100

Los Osos 
n2 = 256

Baywood
n3 = 126

Terrestrial mammal

Human

Farm

Domestic

Bird

Figure 2.5.2 Stacked
relative frequency
(percentage) chart of 
E. coli source by location

Like the frequency table, the stacked frequency bar chart is not conducive
to making comparisons across the three locations as the sample sizes differ for
these locations. (This graph does help highlight the difference in sample sizes; for
example, it is very clear that many fewer water specimens were collected at
Baywood.) A chart that better displays the distribution of one categorical variable
across levels of another is a stacked relative frequency (or percentage) bar chart,
which graphs the summaries from a bivariate relative frequency table such as
Table 2.5.2. Figure 2.5.2 provides an example using the E. coli watershed contamina-
tion data. This plot normalizes the bars of Figure 2.5.1 to have the same height
(100%) to facilitate comparisons across the three locations.
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Figure 2.5.2 makes it very easy to see that farm animals are the largest contrib-
utors of E. coli to Chorro Creek while humans are primarily responsible for the
pollution at Baywood. The distribution of the slices in the three bars appears quite
different, suggesting that the distribution of E. coli sources is not the same at the
three locations. In Chapter 10 we will learn how to determine if these apparent
differences are large enough to be compelling evidence for real differences in the
distribution of E. coli source by location, or whether they are likely due to chance
variation.

Numeric–Categorical Relationships

In Section 2.4 we learned that boxplots are graphs based on only five numbers: the
minimum, first quartile, median, third quartile, and maximum. They are appealing
plots because they are very simple and uncluttered, yet contain easy to read infor-
mation about center, spread, skewness, and even outliers of a data set. By displaying
side-by-side boxplots on the same graph, we are able to compare numeric data
among several groups. We now consider an extension of the radish shoot growth
problem in Example 2.4.3.

Radish Growth Does light exposure alter initial radish shoot growth? The complete
radish growth experiment of Example 2.4.3 actually involved a total of 42 radish
seeds randomly divided to receive one of three lighting conditions for germination
(14 seeds in each lighting condition): 24-hour light, diurnal light (12 hours of light
and 12 hours of darkness each day), and 24 hours of darkness. At the end of three
days, shoot length was measured (mm). Thus, each shoot has two variables that are
measured in this study: the categorical variable lighting condition (light, diurnal,
dark) and the numeric variable sprout length (mm). Figure 2.5.3 displays side-by-
side boxplots of the data. The boxplots make it very easy to compare the growth
under the three conditions: It appears that light inhibits shoot growth. Are the ob-
served differences in growth among the lighting conditions just due to chance varia-
tion, or is light really altering growth? We will learn how to numerically measure the
strength of this evidence and answer this question in Chapters 7 and 11. �

Example
2.5.3
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Figure 2.5.3 Side-by-side
boxplots of radish growth
under three conditions:
constant darkness, half
light–half darkness, and
constant light
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For smaller data sets, we also may consider side-by-side dotplots of the data.
Figure 2.5.4 displays a jittered side-by-side dotplot of the radish growth data of
Example 2.5.3.The “jitter” is a common software option that adds horizontal scatter
to the plot, helping to reduce the overlap of the dots. Choosing between side-by-side
boxplots and dotplots is matter of personal preference. A good rule of thumb is to
choose the plot that accurately reflects patterns in the data in the cleanest (least ink
on the paper) way possible. For the radish growth example, the boxplot enables a
very clean comparison of the growth under the three light treatments without hiding
any information revealed by the dotplot.

Numeric–Numeric Relationships

Each of the previous examples considered comparing the distribution of one vari-
able (either categorical or numeric) among several groups (i.e., across levels of a
categorical variable). In the next example we illustrate the scatterplot as a tool to
examine the relationship between two numeric variables, X and Y. A scatterplot
plots each observed (x,y) pair as a dot on the x–y plane.

Whale Selenium Can metal concentration in marine mammal teeth be used as a
bioindicator for body burden? Selenium (Se) is an essential element that has been
shown to play an important role in protecting marine mammals against the toxic
effects of mercury (Hg) and other metals. Twenty beluga whales (Delphinapterus
leucas) were harvested from the Mackenzie Delta, Northwest Territories, as part of
an annual traditional Inuit hunt.30 Each whale yielded two numeric measurements:
Tooth Se ( ) and Liver Se (ng/g). Selenium concentrations for the whales are
listed in Table 2.5.3. Tooth Se concentration (Y) is graphed against Liver Se concen-
tration (X) in the scatterplot of Figure 2.5.5. �

�g/g

Example
2.5.4

5

Darkness Diurnal
Light treatment

Light

10

15

20

G
ro

w
th

 (
m

m
) 25

30

35

Figure 2.5.4 Side-by-side
jittered dotplots of radish
growth under three
conditions: constant
darkness, half light–half
darkness, and constant light
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Scatterplots are helpful in revealing relationships between numeric variables.
In Figure 2.5.6 two lines have been added to the whale selenium scatterplot of Figure
2.5.5 to highlight the increasing trend in the data: Tooth Se concentration tends to in-
crease with liver Se concentration. The dashed line is called a lowess smooth whereas
the straight solid line is called a regression line. Many software packages allow one to
easily add these lines to a scatterplot.The lowess smooth is particularly helpful in visu-
alizing curved or nonlinear relationships in data, while the regression line is used to
highlight linear trend. Generally speaking, we would choose only one of these to dis-
play on our graph. In this case, since the pattern is fairly linear (the lowess smooth is
fairly straight), we would choose the solid regression line. In Chapter 12 we will learn
how to identify the equation of the regression line that best summarizes the data and
determine if the apparent trend in the data is likely to be just due to chance or if there
is evidence for a real relationship between X and Y.

Table 2.5.3 Liver and tooth selenium concentrations of twenty belugas

Whale
Liver Se 
( )�g/g

Tooth Se 
(ng/g) Whale

Liver Se 
( )�g/g

Tooth Se 
(ng/g)

1 6.23 140.16 11 15.28 112.63

2 6.79 133.32 12 18.68 245.07

3 7.92 135.34 13 22.08 140.48

4 8.02 127.82 14 27.55 177.93

5 9.34 108.67 15 32.83 160.73

6 10.00 146.22 16 36.04 227.60

7 10.57 131.18 17 37.74 177.69

8 11.04 145.51 18 40.00 174.23

9 12.36 163.24 19 41.23 206.30

10 14.53 136.55 20 45.47 141.31
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Figure 2.5.5 Scatterplot
of tooth selenium
concentration against liver
selenium concentration for
20 belugas
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Figure 2.5.6 Scatterplot
of tooth selenium
concentration against liver
selenium concentration for
20 belugas with regression
(solid) and lowess (dashed)
summary lines and outlier
marked in blue

In addition to revealing relationships between two numeric variables, scatter-
plots also help reveal outliers that might otherwise be unnoticed in univariate plots
(e.g., histograms, single boxplots, etc.). The colored point on Figure 2.5.6 falls far
from the scatter of the other points. The X value of this point is not unusual in any
way, and even the Y value, though large, doesn’t appear extreme. The scatterplot,
however, shows that the particular (x,y) pair for this whale is unusual.

Exercises 2.5.1–2.5.3

2.5.1 The two claws of the lobster (Homarus ameri-
canus) are identical in the juvenile stages. By adulthood,
however, the two claws normally have differentiated into
a stout claw called a “crusher” and a slender claw called a
“cutter.” In a study of the differentiation process, 26 juve-
nile animals were reared in smooth plastic trays and 18
were reared in trays containing oyster chips (which they
could use to exercise their claws). Another 23 animals
were reared in trays containing only one oyster chip. The
claw configurations of all the animals as adults are sum-
marized in the table.31

CLAW CONFIGURATION

TREATMENT

RIGHT
CRUSHER, 
LEFT CUTTER

RIGHT
CUTTER, LEFT 
CRUSHER

RIGHT AND 
LEFT CUTTER 
(NO CRUSHER)

Oyster chips 8 9 1

Smooth
plastic

2 4 20

One oyster 
chip

7 9 7

(a) Create a stacked frequency bar chart to display these
data.

(b) Create a stacked relative frequency bar chart to
display these data.

(c) Of the two charts you created in parts (a) and
(b), which is more useful for comparing the claw con-
figurations across the three treatments? Why?

2.5.2 Does the length (mm) of the golden mantled ground
squirrel (Spermophilus lateralis) differ by latitude in
California? A graduate student captured squirrels at four
locations across California. Listed from south to north the
locations are Hemet, Big Bear, Susanville, and Loop Hill.32

HEMET BIG BEAR SUSANVILLE LOOP HILL

263 274 245 273
256 256 272 291

251 249 263 278

242 264 260 281

248 271

281
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(a) Create side-by-side dotplots of the data. Consider
the geography of these four locations when making
your plot. Is alphabetic order of the locations the
most appropriate, or is there a better way to order
the location categories?

(b) Create side-by-side boxplots of the data. Again,
consider the geography of these four locations when
making your plot.

(c) Of the two plots created in parts (a) and (b), which
do you prefer and why?

2.5.3 The rowan (Sorbus aucuparia) is a tree that grows
in a wide range of altitudes. To study how the tree adapts
to its varying habitats, researchers collected twigs with
attached buds from 12 trees growing at various altitudes
in North Angus, Scotland.The buds were brought back to
the laboratory and measurements were made of the dark
respiration rate. The accompanying table shows the alti-
tude of origin (in meters) of each batch of buds and the
dark respiration rate (expressed as l of oxygen per hour
per mg dry weight of tissue).33

m

TREE
ALTITUDE OF 
ORIGIN X (M)

RESPIRATION 
RATE Y ( )ml/hr # mg

1 90 0.11
2 230 0.20

3 240 0.13

4 260 0.15

5 330 0.18

6 400 0.16

7 410 0.23

8 550 0.18

9 590 0.23

10 610 0.26

11 700 0.32

12 790 0.37

(a) Create a scatterplot of the data.

(b) If your software allows, add a regression line to
summarize the trend.

(c) If your software allows, create a scatterplot with a
lowess smooth to summarize the trend.

2.6 Measures of Dispersion
We have considered the shapes and centers of distributions, but a good description
of a distribution should also characterize how spread out the distribution is—are the
observations in the sample all nearly equal, or do they differ substantially? In
Section 2.4 we defined the interquartile range, which is one measure of dispersion.
We will now consider other measures of dispersion: the range, the standard devia-
tion, and the coefficient of variation.

The Range

The sample range is the difference between the largest and smallest observations in
a sample. Here is an example.

Blood Pressure The systolic blood pressures (mm Hg) of seven middle-aged men
were given in Example 2.4.1 as follows:

For these data, the sample range is

�

The range is easy to calculate, but it is very sensitive to extreme values; that is, it
is not robust. If the maximum in the blood pressure sample had been 190 rather than
170, the range would have been changed from 57 to 77.

We defined the interquartile range (IQR) in Section 2.4 as the difference
between the quartiles. Unlike the range, the IQR is robust. The IQR of the blood

170 - 113 = 57 mm Hg

113 124 124 132 146 151 170

Example
2.6.1



pressure data is . If the maximum in the blood pressure sample had
been 190 rather than 170, the IQR would not have changed; it would still be 17.

The Standard Deviation

The standard deviation is the classical and most widely used measure of dispersion.
Recall that a deviation is the difference between an observation and the sample
mean:

The standard deviation of the sample, or sample standard deviation, is determined
by combining the deviations in a special way, as described in the following box.

deviation = observation - yq

151 - 124 = 17
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The Sample Standard Deviation The sample standard deviation is denoted by
s and is defined by the following formula:

In this formula, the expression )2 denotes the sum of the squared
deviations.

gni=1(yi - yq

s = Sa
n

i=1
1yi - yq )2

n - 1

So, to find the standard deviation of a sample, first find the deviations. Then

1. square

2. add

3. divide by 

4. take the square root

To illustrate the use of the formula, we have chosen a data set that is especially
simple to handle because the mean happens to be an integer.

Growth of Chrysanthemums In an experiment on chrysanthemums, a botanist meas-
ured the stem elongation (mm in 7 days) of five plants grown on the same green-
house bench. The results were as follows:34

The data are tabulated in the first column of Table 2.6.1. The sample mean is

The deviations are tabulated in the second column of Table 2.6.1; the first
observation is 3 mm above the mean, the second is 1 mm below the mean, and so on.

The third column of Table 2.6.1 shows that the sum of the squared deviations is

= a
n

i=1
(yi - yq)2 = 164

(yi - yq )

yq =
365
5

= 73 mm

76 72 65 70 82

Example
2.6.2

n - 1
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Since , the standard deviation is

Note that the units of s (mm) are the same as the units of Y. This is because we have
squared the deviations and then later taken the square root. �

The sample variance, denoted by s2, is simply the standard deviation squared:
. Thus, .

Chrysanthemum Growth The variance of the chrysanthemum growth data is

Note that the units of the variance (mm2) are not the same as the units of Y. �

An abbreviation We will frequently abbreviate “standard deviation” as “SD”; the
symbol “s” will be used in formulas.

Interpretation of the Definition of s

The magnitude (disregarding sign) of each deviation ( ) can be interpreted as
the distance of the corresponding observation from the sample mean . Figure 2.6.1
shows a plot of the chrysanthemum growth data (Example 2.6.2) with each distance
marked.

yq
yi - yq

s2 = 41 mm2

Example
2.6.3

s = 1variancevariance = s2

= 6.4 mm

= 141

s = C164
4

n = 5

Table 2.6.1 Illustration of the formula for the sample standard deviation

Observation (yi) Deviation (yi - yq) Squared deviation ( )2
yi - yq

76 3 9

72 -1 1

65 -8 64

70 -3 9

82 9 81

Sum 365 = a
n

i=1
yi

0 164 )2= a
n

i=1
(yi - yq

65 70 75 80 85

Growth (mm)
y

Figure 2.6.1 Plot of
chrysanthemum growth
data with deviations
indicated as distances
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From the formula for s, you can see that each deviation contributes to the SD.
Thus, a sample of the same size but with less dispersion will have a smaller SD, as
illustrated in the following example.

Chrysanthemum Growth If the chrysanthemum growth data of Example 2.6.2 are
changed to

then the mean is the same ( ), but the SD is smaller ( ),
because the observations lie closer to the mean. The relative dispersion of the two
samples can easily be seen from Figure 2.6.2. �

s = 2.1 mmyq = 73 mm

75 72 73 75 70

Example
2.6.4

65

(a)

(b)

70 75 80 85

Growth (mm)
y

Figure 2.6.2 Two samples
of chrysanthemum growth
data with the same mean
but different standard
deviations: (a) ;
(b) s = 6.3 mm

s = 2.1 mm

Let us look more closely at the way in which the deviations are combined to
form the SD. The formula calls for dividing by ( ). If the divisor were n instead
of ( ), then the quantity inside the square root sign would be the average (the
mean) of the squared deviations. Unless n is very small, the inflation due to dividing
by ( ) instead of n is not very great, so that the SD can be interpreted approxi-
mately as

Thus, it is roughly appropriate to think of the SD as a “typical” distance of the obser-
vations from their mean.

Why n ? Since dividing by n seems more natural, you may wonder why the
formula for the SD specifies dividing by ( ). Note that the sum of the devia-
tions is always zero. Thus, once the first deviations have been calculat-
ed, the last deviation is constrained.This means that in a sample with n observations
there are only units of information concerning deviation from the average.
The quantity is called the degrees of freedom of the standard deviation or
variance.We can also give an intuitive justification of why is used by consider-
ing the extreme case when , as in the following example.

Chrysanthemum Growth Suppose the chrysanthemum growth experiment of
Example 2.6.2 had included only one plant, so that the sample consisted of the sin-
gle observation

For this sample, and . However, the SD formula breaks down ,
so the SD cannot be computed. This is reasonable, because the sample gives no in-
formation about variability in chrysanthemum growth under the experimental con-
ditions. If the formula for the SD said to divide by n, we would obtain an SD of zero,

(giving 0
0)yq = 73n = 1

73

Example
2.6.5

n = 1
n -  1

n -  1
n -  1

n - 1yi - yq
n - 1

- 1

s L 3sample average value of (yi - yq)2

n -  1

n -  1
n -  1
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suggesting that there is little or no variability; such a conclusion hardly seems justi-
fied by observation of only one plant. �

The Coefficient of Variation

The coefficient of variation is the standard deviation expressed as a percentage of

the mean: coefficient of variation = 100%. Here is an example.

Chrysanthemum Growth For the chrysanthemum growth data of Example 2.6.2, we
have and . Thus,

The sample coefficient of variation is 8.8%. Thus, the standard deviation is 8.8% as
large as the mean. �

Note that the coefficient of variation is not affected by multiplicative changes of
scale. For example, if the chrysanthemum data were expressed in inches instead of
mm, then both and s would be in inches, and the coefficient of variation would be
unchanged. Because of its imperviousness to scale change, the coefficient of varia-
tion is a useful measure for comparing the dispersions of two or more variables that
are measured on different scales.

Girls’ Height and Weight As part of the Berkeley Guidance Study,35 the heights
(in cm) and weights (in kg) of 13 girls were measured at age two. At age two, the
average height was 86.6 cm and the SD was 2.9 cm. Thus, the coefficient of variation
of height at age two is

For weight at age two the average was 12.6 kg and the SD was 1.4 kg.Thus, the coef-
ficient of variation of weight at age two is

There is considerably more variability in weight than there is in height, when we ex-
press each measure of variability as a percentage of the mean. The SD of weight is a
fairly large percentage of the average weight, but the SD of height is a rather small
percentage of the average height. �

Visualizing Measures of Dispersion

The range and the interquartile range are easy to interpret. The range is the spread
of all the observations and the interquartile range is the spread of (roughly) the
middle 50% of the observations. In terms of the histogram of a data set, the range
can be visualized as (roughly) the width of the histogram. The quartiles are (rough-
ly) the values that divide the area into four equal parts and the interquartile range is
the distance between the first and third quartiles. The following example illustrates
these ideas.

s

yq
* 100% =

1.4
12.6

* 100% = .111 * 100% = 11.1%

s

yq
* 100% =

2.9
86.6

* 100% = .033 * 100% = 3.3%

Example
2.6.7

yq

s

yq
* 100% =

6.4
73.0

* 100% = 0.088 * 100% = 8.8%

s = 6.4 mmyq = 73.0 mm
Example

2.6.6

s

yq
*
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Daily Gain of Cattle The performance of beef cattle was evaluated by measuring their
weight gain during a 140-day testing period on a standard diet. Table 2.6.2 gives
the average daily gains (kg/day) for 39 bulls of the same breed (Charolais); the
observations are listed in increasing order.36 The values range from 1.18 kg/day to
1.92 kg/day. The quartiles are 1.29, 1.41, and 1.58 kg/day. Figure 2.6.3 shows a his-
togram of the data, the range, the quartiles, and the interquartile range (IQR). The
shaded area represents the middle 50% (approximately) of the observations. �

Example
2.6.8

Table 2.6.2 Average daily gain (kg/day) of thirty-nine Charolais bulls

1.18 1.24 1.29 1.37 1.41 1.51 1.58 1.72

1.20 1.26 1.33 1.37 1.41 1.53 1.59 1.76

1.23 1.27 1.34 1.38 1.44 1.55 1.64 1.83

1.23 1.29 1.36 1.40 1.48 1.57 1.64 1.92

1.23 1.29 1.36 1.41 1.50 1.58 1.65

0.8 1.0 1.2 1.4
Q1

1.6 1.8

Range
Gain (kg/day)

2.0 2.2
Q3

IQR

50%

Figure 2.6.3 Smoothed
histogram of 39 daily gain
measurements, showing the
range, the quartiles, and the
interquartile range (IQR).
The shaded area represents
about 50% of the
observations.

Visualizing the Standard Deviation

We have seen that the SD is a combined measure of the distances of the observa-
tions from their mean. It is natural to ask how many of the observations are within

SD of the mean, within SDs of the mean, and so on. The following example
explores this question.

Daily Gain of Cattle For the daily-gain data of Example 2.6.8, the mean is
and the SD is . In Figure 2.6.4 the intervals 

and have been marked on a histogram of the data. The interval
is

You can verify from Table 2.6.2 that this interval contains 25 of the 39
observations. Thus, or 64% of the observations are within SD of the mean; the
corresponding area is shaded in Figure 2.6.4. The intervals is

This interval contains or of the observations. You may verify that the inter-
val contains all the observations. �y ; 3s

95%37
39

1.445 ; 0.366 or 1.079 to 1.811

yq ; 2s
;125

39

1.445 ; 0.183 or 1.262 to 1.628

yq ; s
yq ; 3syq ; 2s,

yq ; s,s = 0.183 kg/dayyq = 1.445 kg/day
Example

2.6.9

;2;1
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0.895
y − 3s

1.078
y − 2s

1.261
y − s

1.628
y + s

1.811
y + 2s

1.994
y + 3s

1.445
y

Gain (kg/day)

≈ 64%

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Figure 2.6.4 Histogram of
daily-gain data showing
intervals 1, 2, and 3
standard deviations from
the mean. The shaded area
represents about 64% of
the observations.

It turns out that the percentages found in Example 2.6.9 are fairly typical of dis-
tributions that are observed in the life sciences.

Typical Percentages: The Empirical Rule
For “nicely shaped” distributions—that is, unimodal distributions that are not
too skewed and whose tails are not overly long or short—we usually expect
to find

about 68% of the observations within SD of the mean.

about 95% of the observations within SDs of the mean.

of the observations within SDs of the mean.;3799%

;2

;1

The typical percentages enable us to construct a rough mental image of a fre-
quency distribution if we know just the mean and SD. (The value 68% may seem to
come from nowhere. Its origin will become clear in Chapter 4.)

Estimating the SD from a Histogram

The empirical rule gives us a way to construct a rough mental image of a frequency
distribution if we know just the mean and SD:We can envision a histogram centered
at the mean and extending out a bit more than 2 SDs in either direction. Of course,
the actual distribution might not be symmetric, but our rough mental image will
often be fairly accurate.

Thinking about this the other way around, we can look at a histogram and esti-
mate the SD. To do this, we need to estimate the endpoints of an interval that is cen-
tered at the mean and that contains about 95% of the data. The empirical rule
implies that this interval is roughly the same as ( , ), so the length of the
interval should be about 4 times the SD:

This means

so

estimate of s =
length of interval

4

length of interval = 4s

(yq - 2s, yq + 2s) has length of 2s + 2s = 4s

yq + 2syq - 2s
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Of course, our visual estimate of the interval that covers the middle 95% of the data
could be off. Moreover, the empirical rule works best for distributions that are sym-
metric. Thus, this method of estimating the SD will give only a general estimate. The
method works best when the distribution is fairly symmetric, but it works reason-
ably well even if the distribution is somewhat skewed.

Pulse after Exercise A group of 28 adults did some moderate exercise for five minutes
and then measured their pulses. Figure 2.6.5 shows the distribution of the data.37

We can see that about 95% of the observations are between about 75 and 125.*
Thus, an interval of length covers the middle 95% of the data. From
this, we can estimate the SD to be . The actual SD is 13.4, which is not far
off from our estimate. �

50
4 = 12.5

50 (125 -75)

Example
2.6.10

10

8

6

4

2

0

70
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80 90 100

Pulse (beats/min)

110 120 130

Figure 2.6.5 Pulse after
moderate exercise for a
group of adults

*It is difficult to visually assess exactly where the middle 95% of the data lay using a histogram, but as this is only
a visual estimate, we need not concern ourselves with producing an exact value. Our visual estimates of the SD
might differ from one another, but they should all be relatively close.

The typical percentages given by the empirical rule may be grossly wrong if the
sample is small or if the shape of the frequency distribution is not “nice.” For
instance, the cricket singing time data (Table 2.3.1 and Figure 2.3.4) has ,
and the interval contains 90% of the observations. This is much higher than
the “typical” 68% because the SD has been inflated by the long straggly tail of the
distribution.

Comparison of Measures of Dispersion

The dispersion, or spread, of the data in a sample can be described by the standard
deviation, the range, or the interquartile range. The range is simple to understand,
but it can be a poor descriptive measure because it depends only on the extreme
tails of the distribution. The interquartile range, by contrast, describes the spread in
the central “body” of the distribution. The standard deviation takes account of all
the observations and can roughly be interpreted in terms of the spread of the obser-
vations around their mean. However, the SD can be inflated by observations in the
extreme tails. The interquartile range is a resistant measure, while the SD is nonre-
sistant. Of course, the range is very highly nonresistant.

The descriptive interpretation of the SD is less straightforward than that of
the range and the interquartile range. Nevertheless, the SD is the basis for most

y ; s
s = 4.4 mm
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Exercises 2.6.1–2.6.16

2.6.1 Calculate the standard deviation of each of the
following fictitious samples:

(a) 16, 13,18, 13

(b) 38, 30, 34, 38, 35

(c)

(d)

2.6.2 Calculate the standard deviation of each of the
following fictitious samples:

(a) 8, 6, 9, 4, 8

(b) 4, 7, 5, 4

(c) 9, 2, 6, 7, 6

2.6.3
(a) Invent a sample of size 5 for which the deviations

( ) are .

(b) Compute the standard deviation of your sample.

(c) Should everyone get the same answer for part (b)?
Why?

2.6.4 Four plots of land, each 346 square feet, were
planted with the same variety (“Beau”) of wheat. The
plot yields (lb) were as follows:38

(a) Calculate the mean and the standard deviation.

(b) Calculate the coefficient of variation.

2.6.5 A plant physiologist grew birch seedlings in the
greenhouse and measured the ATP content of their roots.
(See Example 1.1.3.) The results (nmol ATP/mg tissue)
were as follows for four seedlings that had been handled
identically.39

(a) Calculate the mean and the standard deviation.

(b) Calculate the coefficient of variation.

2.6.6 Ten patients with high blood pressure participated
in a study to evaluate the effectiveness of the drug Timo-
lol in reducing their blood pressure. The accompanying
table shows systolic blood pressure measurements taken
before and after two weeks of treatment with Timolol.40

Calculate the mean and standard deviation of the change
in blood pressure (note that some values are negative).

1.45 1.19 1.05 1.07

35.1 30.6 36.9 29.8

-3, -1, 0, 2, 2yi - yq

4, 6, -1, 4, 2

1, -1, 5, -1

2.6.7 Dopamine is a chemical that plays a role in the
transmission of signals in the brain. A pharmacologist
measured the amount of dopamine in the brain of each of
seven rats. The dopamine levels (nmoles/g) were as
follows:41

(a) Calculate the mean and standard deviation.

(b) Determine the median and the interquartile range.

(c) Calculate the coefficient of variation.

(d) Replace the observation 7.4 by 10.4 and repeat parts
(a) and (b). Which of the descriptive measures dis-
play resistance and which do not?

2.6.8 In a study of the lizard Sceloporus occidentalis,
biologists measured the distance (m) run in two minutes
for each of 15 animals. The results (listed in increasing
order) were as follows:42

6.8 5.3 6.0 5.9 6.8 7.4 6.2

BLOOD PRESSURE (mm HG)

PATIENT BEFORE AFTER CHANGE

1 172 159 -13

2 186 157 -29

3 170 163 -7

4 205 207 2

5 174 164 -10

6 184 141 -43

7 178 182 4

8 156 171 15

9 190 177 -13

10 168 138 -30

18.4 22.2 24.5 26.4 27.5 28.7 30.6 32.9

32.9 34.0 34.8 37.5 42.1 45.5 45.5

(a) Determine the quartiles and the interquartile range.

(b) Determine the range.

standard classical statistical methods. The SD enjoys this classic status for various
technical reasons, including efficiency in certain situations.

The developments in later chapters will emphasize classical statistical methods,
in which the mean and SD play a central role. Consequently, in this book we will rely
primarily on the mean and SD rather than other descriptive measures.
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2.6.9 Refer to the running-distance data of Exercise
2.6.8. The sample mean is 32.23 m and the SD is 8.07 m.
What percentage of the observations are within

(a) 1 SD of the mean?

(b) 2 SDs of the mean?

2.6.10 Compare the results of Exercise 2.6.9 with the
predictions of the empirical rule.

2.6.11 Listed in increasing order are the serum creatine
phosphokinase (CK) levels (U/l) of 36 healthy men
(these are the data of Example 2.2.6):

about the coefficient of variation of height and the coeffi-
cient of variation of weight? It turns out that one of these
went up a moderate amount from age two to age nine,
but for the other variable the increase in the coefficient
of variation was fairly large. For which variable, height or
weight, would you expect the coefficient of variation to
change more between age two and age nine? Why? (Hint:
Think about how genetic factors influence height and
weight and how environmental factors influence height
and weight.)

2.6.14 Consider the 13 girls mentioned in Example
2.6.7.At age 18 their average height was 166.3 cm and the
SD of their heights was 6.8 cm. Calculate the coefficient
of variation.

2.6.15 Here is a histogram. Estimate the mean and the
SD of the distribution.

2.7 Effect of Transformation of Variables (Optional)
Sometimes when we are working with a data set, we find it convenient to transform
a variable. For example, we might convert from inches to centimeters or from °F 
to °C. Transformation, or reexpression, of a variable Y means replacing Y by a new
variable, say Y . To be more comfortable working with data, it is helpful to know
how the features of a distribution are affected if the observed variable is trans-
formed.

The simplest transformations are linear transformations, so called because a
graph of Y against Y would be a straight line. A familiar reason for linear transfor-
mation is a change in the scale of measurement, as illustrated in the following two
examples.

¿

¿

25 62 82 95 110 139

42 64 83 95 113 145

48 67 84 100 118 151

57 68 92 101 119 163

58 70 93 104 121 201

60 78 94 110 123 203

The sample mean CK level is 98.3 U/l and the SD is
40.4 U/l. What percentage of the observations are within

(a) 1 SD of the mean?

(b) 2 SDs of the mean?

(c) 3 SDs of the mean?

2.6.12 Compare the results of Exercise 2.6.11 with the
predictions of the empirical rule.

2.6.13 The girls in the Berkeley Guidance Study
(Example 2.6.7) who were measured at age two were
measured again at age nine. Of course, the average height
and weight were much greater at age nine than at age
two. Likewise, the SDs of height and of weight were much
greater at age nine, than they were at age two. But what

10 20 30 40 50 60 70 80

40 70 100 130 160

2.6.16 Here is a histogram. Estimate the mean and the
SD of the distribution.
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Weight Suppose Y represents the weight of an animal in kg, and we decide to reex-
press the weight in lb. Then

so

This is a multiplicative transformation, because Y is calculated from Y by multi-
plying by the constant value 2.2. �

Body Temperature Measurements of basal body temperature (temperature on wak-
ing) were made on 47 women.43

Typical observations Y, in °C, were

Suppose we convert these data from °C to °F, and call the new variable Y :

The relation between Y and Y is

The combination of additive ( ) and multiplicative ( ) changes indicates a
linear relationship. �

Another reason for linear transformation is coding, which means transforming
the data for convenience in handling the numbers. The following is an example.

Body Temperature Consider the temperature data of Example 2.7.2. If we subtract 36
from each observation, the data become

This is additive coding, since we added a constant value ( ) to each observation.
Now suppose we further transform the data to the form

This step of the coding is multiplicative, since each observation is multiplied by a
constant value (100). �

As the foregoing examples illustrate, a linear transformation consists of 
(1) multiplying all the observations by a constant, or (2) adding a constant to all the
observations, or (3) both.

How Linear Transformations Affect the Frequency Distribution

A linear transformation of the data does not change the essential shape of its
frequency distribution; by suitably scaling the horizontal axis, you can make the
transformed histogram identical to the original histogram. Example 2.7.4 illustrates
this idea.

23,    41,    77,    15, Á

-36

0.23,    0.41,    0.77,    0.15, Á

Example
2.7.3

*1.8+32

Y' = 1.8Y + 32

¿

Y¿: 97.21,    97.54,    98.19,    97.07, Á

¿

Y: 36.23,    36.41,    36.77,    36.15, Á

Example
2.7.2

¿

Y¿ = 2.2Y

Y¿ = Weight in lb

Y = Weight in kg

Example
2.7.1
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How Linear Transformations Affect and s

The effect of a linear transformation on is “natural”; that is, under a linear trans-
formation, changes like Y. For instance, if temperatures are converted from °C to
°F, then the mean is similarly converted:

The effect of multiplying Y by a positive constant on s is “natural”; if
with , then . For instance, if weights are converted

from kg to lb, the SD is similarly converted: . If and ,
then . In general, if then .

However, an additive transformation does not affect s. If we add or subtract a
constant, we do not change how spread out the distribution is, so s does not change.
Thus, for example, we would not convert the SD of temperature data from °C to °F
in the same way as we convert each observation; we would multiply the SD by 1.8,
but we would not add 32. The fact that the SD is unchanged by additive transforma-
tion will appear less surprising if you recall (from the definition) that s depends only
on the deviations ( ), and these are not changed by an additive transformation.
The following example illustrates this idea.

Additive Transformation Consider a simple set of fictitious data, coded by subtracting
20 from each observation. The original and transformed observations are shown in
Table 2.7.1.

The SD for the original observations is

= 1.4

s = C(-1)2 + (0)2 + (2)2 + (-1)2

3

Example
2.7.5

yi - yq

s¿ = ƒc ƒ * sY¿ = c * Ys¿ = -c * s
c 6 0Y¿ = c * Ys¿ = 2.2s

s¿ = c * sc 7 0Y¿ = c * Y,

Y¿ = 1.8Y + 32        so yq ¿ = 1.8yq ¿ + 32

yq
yq

yq

Body Temperature Figure 2.7.1 shows the distribution of 47 temperature measure-
ments that have been transformed by first subtracting 36 from each observation
and then multiplying by 100 (as in Examples 2.7.2 and 2.7.3). That is,

.The figure shows that the two distributions can be represent-
ed by the same histogram with different horizontal scales. �

Y¿ = (Y - 36) * 100

Example
2.7.4

0

36.0 36.2 36.4 36.6 36.8 37.0 Y

Y′0 20 40 60 80 100

5F
re

qu
en

cy 10

15
Figure 2.7.1 Distribution
of 47 temperature
measurements showing
original and linearly
transformed scales
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Because the deviations are unaffected by the transformation, the SD for the trans-
formed observations is the same:

�

An additive transformation effectively picks up the histogram of a distribution
and moves it to the left or to the right on the number line. The shape of the his-
togram does not change and the deviations do not change, so the SD does not
change. A multiplicative transformation, on the other hand, stretches or shrinks the
distribution, so the SD gets larger or smaller accordingly.

Other Statistics Under linear transformations, other measures of center (for
instance, the median) change like , and other measures of dispersion (for instance,
the interquartile range) change like s. The quartiles themselves change like .

Nonlinear Transformations

Data are sometimes reexpressed in a nonlinear way. Examples of nonlinear trans-
formations are

These transformations are termed “nonlinear” because a graph of Y against Y
would be a curve rather than a straight line. Computers make it easy to use nonlin-
ear transformations. The logarithmic transformation is especially common in biolo-
gy because many important relationships can be simply expressed in terms of logs.
For instance, there is a phase in the growth of a bacterial colony when log(colony
size) increases at a constant rate with time. [Note that logarithms are used in some
familiar scales of measurement, such as pH measurement or earthquake magnitude
(Richter scale).]

Nonlinear transformations can affect data in complex ways. For example, the
mean does not change “naturally” under a log transformation; the log of the mean is
not the same as the mean of the logs. Furthermore, nonlinear transformations
(unlike linear ones) do change the essential shape of a frequency distribution.

¿

Y¿ = Y2

Y¿ =
1
Y

Y¿ = log(Y)

Y¿ = 1Y

yq
yq

s¿ = 1.4

Table 2.7.1 Effect of additive transformation

Original
observations (y)

Deviations
(yi - yq)

Transformed 
observations (y )¿

Deviations
(yœi - yq)

25 -1 5 -1

26 0 6 0

28 2 8 2

25 -1 5 -1

Mean 26 6
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Figure 2.7.2 Distribution of Y, of , and of log(Y)
for 51 observations of Y = cricket singing time
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(b)

(c)

4 5

Singing time√

In future chapters we will see that if a distribution is skewed to the right, such as
the cricket singing-time distribution shown in Figure 2.7.2, then we may wish to
apply a transformation that makes the distribution more symmetric, by pulling in
the right-hand tail. Using will pull in the right-hand tail of a distribution
and push out the left-hand tail.The transformation is more severe than

in this regard.The following example shows the effect of these transformations.

Cricket Singing Times Figure 2.7.2(a) shows the distribution of the cricket singing-
time data of Table 2.3.1. If we transform these data by taking square roots, the trans-
formed data have the distribution shown in Figure 2.7.2(b). Taking logs (base 10)
yields the distribution shown in Figure 2.7.2(c). Notice that the transformations
have the effect of “pulling in” the straggly upper tail and “stretching out” the
clumped values on the lower end of the original distribution. �

Example
2.7.6

1Y Y¿ = log(Y)
Y¿ = 1Y

Exercises 2.7.1–2.7.6

2.7.1 A biologist made a certain pH measurement in
each of 24 frogs; typical values were44

She calculated a mean of 7.373 and a standard deviation
of 0.129 for these original pH measurements. Next, she

7.43,    7.16,    7.51, Á

transformed the data by subtracting 7 from each observa-
tion and then multiplying by 100. For example, 7.43 was
transformed to 43. The transformed data are

What are the mean and standard deviation of the trans-
formed data?

43,    16,    51, Á
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(a)

2.7.2 The mean and SD of a set of 47 body temperature
measurements were as follows:45

If the 47 measurements were converted to °F,
(a) What would be the new mean and SD?

(b) What would be the new coefficient of variation?

2.7.3 A researcher measured the average daily gains (in
kg/day) of 20 beef cattle; typical values were46

The mean of the data was 1.461 and the standard devia-
tion was 0.178.

(a) Express the mean and standard deviation in lb/day.
(Hint: .)

(b) Calculate the coefficient of variation when the data
are expressed (i) in kg/day; (ii) in lb/day.

2.7.4 Consider the data from Exercise 2.7.3. The mean
and SD were 1.461 and 0.178. Suppose we transformed
the data from

to

What would be the mean and standard deviation of the
transformed data?

2.7.5 The following histogram shows the distribution for
a sample of data:

39,    57,    44, Á

1.39,    1.57,    1.44, Á

1 kg = 2.20 lb

1.39,    1.57,    1.44, Á

yq = 36.497 °C s = 0.172 °C

One of the following histrograms is the result of applying
a square root transformation and the other is the result of
applying a log transformation. Which is which? How do
you know?

(b)

2.7.6 (Computer problem) The file ‘Exer2.7.6.csv’ is
included on the data disk packaged with this text.This file
contains 36 observations on the number of dendritic
branch segments emanating from nerve cells taken from
the brains of newborn guinea pigs. (These data were used
in Exercise 2.2.4.) Open the file and enter the data into a
statistics package. Make a histogram of the data, which
are skewed to the right. Now consider the following pos-
sible transformations: sqrt(Y), log(Y), and 1/sqrt(Y).
Which of these transformations does the best job of
meeting the goal of making the resulting distribution rea-
sonably symmetric?

2.8 Statistical Inference
The description of a data set is sometimes of interest for its own sake. Usually, how-
ever, the researcher hopes to generalize, to extend the findings beyond the limited
scope of the particular group of animals, plants, or other units that were actually
observed. Statistical theory provides a rational basis for this process of generaliza-
tion, building on the random sampling model from Section 1.3 and taking into
account the variability of the data.The key idea of the statistical approach is to view
the particular data in a study as a sample from a larger population; the population is
the real focus of scientific and/or practical interest.The following example illustrates
this idea.
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Blood Types In an early study of the ABO blood-typing system, researchers
determined blood types of 3,696 persons in England. The results are given in
Table 2.8.1.47

These data were not collected for the purpose of learning about the blood types
of those particular 3,696 people. Rather, they were collected for their scientific value
as a source of information about the distribution of blood types in a larger popula-
tion. For instance, one might presume that the blood type distribution of all English
people should resemble the distribution for these 3,696 people. In particular, the
observed relative frequency of type A blood was

One might conclude from this that approximately 44% of the people in England
have type A blood. �

The process of drawing conclusions about a population, based on observations
in a sample from that population, is called statistical inference. For instance, in
Example 2.8.1 the conclusion that approximately 44% of the people in England
have type A blood would be a statistical inference.The inference is shown schemati-
cally in Figure 2.8.1. Of course, such an inference might be entirely wrong—perhaps
the 3,696 people are not at all representative of English people in general.We might
be worried about two possible sources of difficulty: (1) the 3,696 people might have
been selected in a way that was systematically biased for (or against) type A people,
and (2) the number of people examined might have been too small to permit gener-
alization to a population of many millions. In general, it turns out that the popula-
tion size being in the millions is not a problem, but bias in the way people are
selected is a big concern.

1634
3696

 or 44% type A

Example
2.8.1

2. Select a representative sample
    from the population

4. Perform analyses for statistical
    inference about the population

3. Tabulate data in
     the SAMPLE:
     Blood types of
     3,696 English people

44% Type AUnknown% Type A

1. POPULATION: Blood types of 
    all English people

Figure 2.8.1 Schematic representation of inference from sample to population
regarding prevalence of blood type A

Table 2.8.1 Blood types
of 3,696 persons

Blood type Frequency

A 1,634

B 327

AB 119

O 1,616

Total 3,696

In making a statistical inference, we hope that the sample resembles the popula-
tion closely—that the sample is representative of the population. In Section 1.3 we
saw how sampling errors and nonsampling errors can lead to nonrepresentative
samples. However, even in the absence of bias we must ask how likely it is that a par-
ticular sample will provide a good representation of the population. The important
question is: How representative (of the population) is a sample likely to be? We will
see in Chapter 5 how statistical theory can help to answer this question.



Section 2.8 Statistical Inference 75

Specifying the Population

In Section 1.3 we emphasized that the collection of individuals that comprise a sam-
ple should be representative of the population. In fact, this requirement is a bit
stronger than what is actually necessary. Ultimately, what matters is that the meas-
urements that we obtain on the variable of interest are representative of the values
present in the population. The following provides an example of a case where the
sample members might not be representative of the population, but one could argue
that the measurements taken from this sample could be viewed as representative of
the larger population.

Blood Types How were the 3,696 English people of Example 2.8.1 actually chosen?
It appears from the original paper that this was a “sample of convenience,” that is,
friends of the investigators, employees, and sundry unspecified sources. There is
little basis for believing that the people themselves would be representative of the
entire English population. Nevertheless, one might argue that their blood types
might be (more or less) representative of the population. The argument would be
that the biases that entered into the selection of those particular people were prob-
ably not related to blood type. [Nonetheless, an objection to this argument might be
made on the basis of race. For example, the racial distribution of the sample could
differ substantially from the racial distribution of England (the population) and
there are known differences in blood type distributions among races.] The argument
for representativeness would be much less plausible if the observed variable were
blood pressure rather than blood type; we know that blood pressure tends to
increase with age, and the selection procedure was undoubtedly biased against
certain age groups (for example, elderly people). �

As Example 2.8.2 shows, whether the measurements obtained from a sample
are likely to be representative of the measurements from a population depends not
only on how the observational units (in this case people) were chosen, but also on
the variable that was observed. Ideally we would always work with random samples,
but we have noted that in some instances random samples are not possible or con-
venient. However, by turning our attention to the measurements themselves rather
than the individuals from which they came, we can often make an argument for the
generalizabiltity (or lack of generalizability) of our results to a larger population.
We do this by thinking of the population as consisting of observations or a collection
of values from a measurement process, rather than of people or other observational
units. The following is another example.

Alcohol and MOPEG The biochemical MOPEG plays a role in brain function. Seven
healthy male volunteers participated in a study to determine whether drinking alco-
hol might elevate the concentration of MOPEG in the cerebrospinal fluid. The
MOPEG concentration was measured twice for each man—once at the start of the
experiment, and again after he drank 80 gm of ethanol. The results (in pmol/ml) are
given in Table 2.8.2.48

Let us focus on the rightmost column, which shows the change in MOPEG con-
centration (that is, the difference between the “after” and the “before” measure-
ments). In thinking of these values as a sample from a population, we need to
specify all the details of the experimental conditions—how the cerebrospinal
specimens were obtained, the exact timing of the measurements and the alcohol

Example
2.8.3

Example
2.8.2
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consumption, and so on—as well as relevant characteristics of the volunteers them-
selves. Thus, the definition of the population might be something like this:

Population Change in cerebrospinal MOPEG concentration in healthy
young men when measured before and after drinking 80 gm of ethanol, both
measurements being made at 8:00 A.M., . . . (other relevant experimental
conditions are specified here).

There is no single “correct” definition of a population for an experiment like
this. A scientist reading a report of the experiment might find this definition too
narrow (for instance, perhaps it does not matter that the volunteers were measured
at 8:00 A.M.) or too broad. She might use her knowledge of alcohol and brain chem-
istry to formulate her own definition, and she would then use that definition as a
basis for interpreting these seven observations. �

Describing a Population

Because observations are made only on a sample, characteristics of biological popu-
lations are almost never known exactly. Typically, our knowledge of a population
characteristic comes from a sample. In statistical language, we say that the sample
characteristic is an estimate of the corresponding population characteristic. Thus,
estimation is a type of statistical inference.

Just as each sample has a distribution, a mean, and an SD, so also we can envi-
sion a population distribution, a population mean, and a population SD. In order to
discuss inference from a sample to a population, we will need a language for
describing the population. This language parallels the language that describes the
sample. A sample characteristic is called a statistic; a population characteristic is
called a parameter.

Proportions

For a categorical variable, we can describe a population by simply stating the pro-
portion, or relative frequency, of the population in each category. The following is a
simple example.

Oat Plants In a certain population of oat plants, resistance to crown rust disease is
distributed as shown in Table 2.8.3.49

�

Example
2.8.4

Table 2.8.2 Effect of alcohol on MOPEG

MOPEG concentration

Volunteer Before After Change

1 46 56 10

2 47 52 5

3 41 47 6

4 45 48 3

5 37 37 0

6 48 51 3

7 58 62 4
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Remark The population described in Example 2.8.4 is realistic, but it is not a specif-
ic real population; the exact proportions for any real population are not known. For
similar reasons, we will use fictitious but realistic populations in several other exam-
ples, here and in Chapters 3, 4, and 5.

For categorical data, the sample proportion of a category is an estimate of the
corresponding population proportion. Because these two proportions are not neces-
sarily the same, it is essential to have a notation that distinguishes between them.We
denote the population proportion of a category by p and the sample proportion by

(read “p-hat”):

The symbol “^” can be interpreted as “estimate of.” Thus,

We illustrate this notation with an example.

Lung Cancer Eleven patients suffering from adenocarcinoma (a type of lung cancer)
were treated with the chemotherapeutic agent Mitomycin. Three of the patients
showed a positive response (defined as shrinkage of the tumor by at least 50%).50

Suppose we define the population for this study as “responses of all adenocarcino-
ma patients.” Then we can represent the sample and population proportions of the
category “positive response” as follows:

Note that p is unknown, and , which is known, is an estimate of p. �

We should emphasize that an “estimate,” as we are using the term, may or may
not be a good estimate. For instance, the estimate in Example 2.8.5 is based on
very few patients; estimates based on a small number of observations are subject to
considerable uncertainty. Of course, the question of whether an estimation proce-
dure is good or poor is an important one, and we will show in later chapters how this
question can be answered.

Other Descriptive Measures

If the observed variable is quantitative, one can consider descriptive measures other
than proportions—the mean, the quartiles, the SD, and so on. Each of these quantities
can be computed for a sample of data, and each is an estimate of its corresponding

pN

pN

pN =
3
11

= 0.27

pN = Proportion of positive responders among the 11 patients in the study

p = Proportion of positive responders among all adenocarcinoma patients

Example
2.8.5

pN is an estimate of p.

pN = Sample proportion

p = Population proportion

pN

Table 2.8.3 Disease resistance in oats

Resistance Proportion of plants

Resistant 0.47

Intermediate 0.43

Susceptible 0.10

Total 1.00
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population analog. For instance, the sample median is an estimate of the population
median. In later chapters, we will focus especially on the mean and the SD, and so we
will need a special notation for the population mean and SD. The population mean is
denoted by (mu), and the population SD is denoted by (sigma). We may define
these as follows for a quantitative variable Y:

The following example illustrates this notation.

Tobacco Leaves An agronomist counted the number of leaves on each of 150 tobacco
plants of the same strain (Havana). The results are shown in Table 2.8.4.51

The sample mean is

yq = 19.78 = Mean number of leaves on the 150 plants

Example
2.8.6

s = 3Population average value of (Y - m)2

m = Population average value of Y

SM

Table 2.8.4 Number of leaves on tobacco plants

Number of leaves Frequency (number of plants)

17 3

18 22

19 44

20 42

21 22

22 10

23 6

24 1

Total 150

*You may wonder why we use and s instead of and . One answer is tradition. Another answer is that since
“^” means estimate, you might have other estimates in mind.

sNmNyq

The population mean is

We do not know , but we can regard as an estimate of . The sample 
SD is

The population SD is

We do not know , but we can regard as an estimate of .* �ss = 1.38s

under these conditions
s = SD of number of leaves on Havana tobacco plants grown 

s = 1.38 = SD of number of leaves on the 150 plants

myq = 19.78m

 under these conditions
m = Mean number of leaves on Havana tobacco plants grown 
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2.9 Perspective
In this chapter we have considered various ways of describing a set of data.We have
also introduced the notion of regarding features of a sample as estimates of corre-
sponding features of a suitably defined population.

Parameters and Statistics

Some features of a distribution—for instance, the mean—can be represented by a
single number, while some—for instance, the shape—cannot. We have noted that 
a numerical measure that describes a sample is called a statistic. Correspondingly, a
numerical measure that describes a population is called a parameter. For the most
important numerical measures, we have defined notations to distinguish between
the statistic and the parameter. These notations are summarized in Table 2.9.1 for
convenient reference.

Table 2.9.1 Notation for some important statistics and parameters

Measure
Sample value 

(statistic)
Population value 

(parameter)

Proportion pN p

Mean yq m

Standard deviation s s

A Look Ahead

It is natural to view a sample characteristic (for instance, ) as an estimate of the
corresponding population characteristic (for instance, ). But in taking such a view,
one must guard against unjustified optimism. Of course, if the sample were perfect-
ly representative of the population, then the estimate would be perfectly accurate.
But this raises the central question: How representative (of the population) is a
sample likely to be? Intuition suggests that, if the observational units are appropri-
ately selected, then the sample should be more or less representative of the popula-
tion. Intuition also suggests that larger samples should tend to be more
representative than smaller samples. These intuitions are basically correct, but they
are too vague to provide practical guidance for research in the life sciences. Practical
questions that need to be answered are

1. How can an investigator judge whether a sample can be viewed as “more or
less” representative of a population?

2. How can an investigator quantify “more or less” in a specific case?

In Section 1.3 we described a theoretical probability model based on random
sampling that provides a framework for the judgment in question (1), and in
Chapter 6 we will see how this model can provide a concrete answer to question (2).
Specifically, in Chapter 6 we will see how to analyze a set of data so as to quantify
how closely the sample mean ( ) estimates the population mean ( ). But before re-
turning to data analysis in Chapter 6, we will need to lay some groundwork in
Chapters 3, 4, and 5; the developments in these chapters are an essential prelude to
understanding the techniques of statistical inference.

myq

m

yq
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Supplementary Exercises 2.S.1–2.S.20

2.S.1 A sample of four students had the following
heights (in cm): 180, 182, 179, 176. Suppose a fifth student
were added to the group. How tall would that student
have to be to make the mean height of the group
equal 181?

2.S.2 A botanist grew 15 pepper plants on the same
greenhouse bench. After 21 days, she measured the total
stem length (cm) of each plant, and obtained the follow-
ing values:52

12.4 12.2 13.4

10.9 12.2 12.1

11.8 13.5 12.0

14.1 12.7 13.2

12.6 11.9 13.1

34 24 10 16 52
76 33 31 46 24

18 26 57 32 25

48 22 48 29 19

0.111 0.115 0.115 0.110 0.099

0.121 0.107 0.107 0.100 0.110

0.106 0.116 0.098 0.116 0.108

0.098 0.120 0.123 0.124 0.122

0.116 0.130 0.114 0.100 0.123

0.119 0.107

(a) Construct a dotplot for these data, and mark the
positions of the quartiles.

(b) Calculate the interquartile range.

2.S.3 In a behavioral study of the fruitfly Drosophila
melanogaster, a biologist measured, for individual flies,
the total time spent preening during a six-minute
observation period. The following are the preening times
(sec) for 20 flies:53

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) Construct a (modified) boxplot of the data.

2.S.4 To calibrate a standard curve for assaying protein
concentrations, a plant pathologist used a spectropho-
tometer to measure the absorbance of light (wavelength
500 nm) by a protein solution. The results of 27 replicate
assays of a standard solution containing protein per
ml water were as follows:54

60 mg

2.S.5 Refer to the absorbance data of Exercise 2.S.4.

(a) Determine the median, the quartiles, and the
interquartile range.

(b) How large must an observation be to be an outlier?

2.S.6 The midrange is defined as the average of the min-
imum and maximum of a distribution. Is the midrange a
robust statistic? Why or why not?

2.S.7 Twenty patients with severe epilepsy were
observed for eight weeks. The following are the numbers
of major seizures suffered by each patient during the
observation period:55

(a) Determine the median number of seizures.

(b) Determine the mean number of seizures.

(c) Construct a histogram of the data. Mark the posi-
tions of the mean and the median on the histogram.

(d) What feature of the frequency distribution suggests
that neither the mean nor the median is a meaningful
summary of the experience of these patients?

2.S.8 Calculate the standard deviation of each of the
following fictitious samples:

(a) 11, 8, 4, 10, 7 (b) 23, 29, 24, 21, 23

(c)

2.S.9 To study the spatial distribution of Japanese beetle
larvae in the soil, researchers divided a -foot sec-
tion of a cornfield into 144 one-foot squares. They count-
ed the number of larvae Y in each square, with the results
shown in the following table.56

12- * 12

6, 0, -3, 2, 5

5 0 9 6 0 0 5 0 6 1

5 0 0 0 0 7 0 0 4 7

NUMBER OF LARVAE
FREQUENCY 

(NUMBER OF SQUARES)

0 13

1 34

2 50

3 18

4 16

5 10

6 2

7 1

Total 144

Construct a frequency distribution and display it as a
table and as a histogram.

(a) The mean and standard deviation of Y are
and . What percentage of the observations
are within

s = 1.47
yq = 2.23
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The following computations are to be done on the change
in maximal oxygen uptake (the right-hand column).

(a) Calculate the mean and the standard deviation.

(b) Determine the median.

(c) Eliminate participant 1 from the data and repeat
parts (a) and (b). Which of the descriptive measures
display resistance and which do not?

2.S.11 A veterinary anatomist investigated the spatial
arrangement of the nerve cells in the intestine of a pony.
He removed a block of tissue from the intestinal wall, cut
the block into many equal sections, and counted the
number of nerve cells in each of 23 randomly selected
sections. The counts were as follows.58

(i) 1 standard deviation of the mean?
(ii) 2 standard deviations of the mean?

(b) Determine the total number of larvae in all 144
squares. How is this number related to ?

(c) Determine the median value of the distribution.

2.S.10 One measure of physical fitness is maximal
oxygen uptake, which is the maximum rate at which a
person can consume oxygen. A treadmill test was used to
determine the maximal oxygen uptake of nine college
women before and after participation in a 10-week pro-
gram of vigorous exercise.The accompanying table shows
the before and after measurements and the change
(after–before); all values are in ml O2 per mm per kg
body weight.57

yq

MAXIMAL OXYGEN UPTAKE

PARTICIPANT BEFORE AFTER CHANGE

1 48.6 38.8 -9.8
2 38.0 40.7 2.7

3 31.2 32.0 0.8

4 45.5 45.4 -0.1
5 41.7 43.2 1.5

6 41.8 45.3 3.5

7 37.9 38.9 1.0

8 39.2 43.5 4.3

9 47.2 45.0 -2.2

35 19 33 34 17 26 16 40
28 30 23 12 27 33 22 31

28 28 35 23 23 19 29

(a) Find the median number of bristles.

(b) Find the first and third quartiles of the sample.

(c) Make a boxplot of the data.

(d) The sample mean is 38.45 and the standard deviation
is 3.20. What percentage of the observations fall
within 1 standard deviation of the mean?

2.S.14 The carbon monoxide in cigarettes is thought to
be hazardous to the fetus of a pregnant woman who
smokes. In a study of this hypothesis, blood was drawn
from pregnant women before and after smoking a ciga-
rette. Measurements were made of the percent of blood
hemoglobin bound to carbon monoxide as carboxyhemo-
globin (COHb). The results for 10 women are shown in
the table.60

2.S.12 Exercise 2.S.11 asks for a boxplot of the nerve-cell
data. Does this graphic support the claim that the data
came from a reasonably symmetric distribution?

2.S.13 A geneticist counted the number of bristles on a
certain region of the abdomen of the fruitfly Drosophila
melanogaster. The results for 119 individuals were as
shown in the table.59

NUMBER OF 
BRISTLES

NUMBER
OF FLIES

NUMBER OF 
BRISTLES

NUMBER
OF FLIES

29 1 38 18

30 0 39 13

31 1 40 10

32 2 41 15

33 2 42 10

34 6 43 2

35 9 44 2

36 11 45 3

37 12 46 2

(a) Determine the median, the quartiles, and the
interquartile range.

(b) Construct a boxplot of the data.

BLOOD COHB (%)

SUBJECT BEFORE AFTER INCREASE

1 1.2 7.6 6.4
2 1.4 4.0 2.6

3 1.5 5.0 3.5

4 2.4 6.3 3.9

5 3.6 5.8 2.2

6 0.5 6.0 5.5

7 2.0 6.4 4.4

8 1.5 5.0 3.5

9 1.0 4.2 3.2

10 1.7 5.2 3.5
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(a) Calculate the mean and standard deviation of the
increase in COHb.

(b) Calculate the mean COHb before and the mean
after. Is the mean increase equal to the increase in
means?

(c) Determine the median increase in COHb.

(d) Repeat part (c) for the before measurements and for
the after measurements. Is the median increase equal
to the increase in medians?

2.S.15 (Computer problem) A medical researcher in
India obtained blood specimens from 31 young chil-
dren, all of whom were infected with malaria. The
following data, listed in increasing order, are the num-
bers of malarial parasites found in 1 ml of blood from
each child.61

2.S.17 The following histograms (a), (b), and (c) show
three distributions.

(a) Construct a frequency distribution of the data, using
a class width of 10,000; display the distribution as a
histogram.

(b) Transform the data by taking the logarithm (base 10)
of each observation. Construct a frequency distribu-
tion of the transformed data and display it as a
histogram. How does the log transformation affect
the shape of the frequency distribution?

(c) Determine the mean of the original data and the
mean of the log-transformed data. Is the mean of the
logs equal to the log of the mean?

(d) Determine the median of the original data and the
median of the log-transformed data. Is the median of
the logs equal to the log of the median?

2.S.16 Rainfall, measured in inches, for the month
of June in Cleveland, Ohio, was recorded for each of
41 years.62 The values had a minimum of 1.2, an average
of 3.6, and a standard deviation of 1.6. Which of the
following is a rough histogram for the data? How do you
know?

The accompanying computer output shows the mean,
median, and standard deviation of the three distributions,
plus the mean, median, and standard deviation for a
fourth distribution. Match the histograms with the statis-
tics. Explain your reasoning. (One set of statistics will not
be used.)

1.Count 100 2.Count 100
Mean 41.3522 Mean 39.6761
Median 39.5585 Median 39.5377
StdDev 13.0136 StdDev 10.0476

3.Count 100 4.Count 100
Mean 37.7522 Mean 39.6493
Median 39.5585 Median 39.5448
StdDev 13.0136 StdDev 17.5126

100 140 140 271 400 435 455 770
826 1,400 1,540 1,640 1,920 2,280 2,340 3,672

4,914 6,160 6,560 6,741 7,609 8,547 9,560 10,516

14,960 16,855 18,600 22,995 29,800 83,200 134,232

I

II

III

20 40
(a)

60

20 40

(b)

60

20 40 60
(c)
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2.S.18 The following boxplots show mortality rates
(deaths within one year per 100 patients) for heart
transplant patients at various hospitals. The low-volume
hospitals are those that perform between 5 and 9 trans-
plants per year. The high-volume hospitals perform 10 or
more transplants per year.63 Describe the distributions,
paying special attention to how they compare to one an-
other. Be sure to note the shape, center, and spread of
each distribution.

2.S.19 (Computer problem) Physicians measured the
concentration of calcium (nM) in blood samples from 38
healthy persons. The data are listed as follows:64

0

10

20

M
or

ta
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y

30

40

Low High
Volume

Calculate appropriate measures of the center and spread
of the distribution. Describe the shape of the distribution
and any unusual features in the data.

2.S.20 The following boxplot shows the same data that
are shown in one of the three histograms. Which his-
togram goes with the boxplot? Explain your answer.

0 10 20 30 40 50 60 70

0 20 40

(a)

60 0 20 40

(b)

60 0 20 40

(c)

60

95 110 135 120 88 125

112 100 130 107 86 130

122 122 127 107 107 107

88 126 125 112 78 115

78 102 103 93 88 110

104 122 112 80 121 126

90 96


